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Abstract—In real world multi-target tracking problems, the
presence of merged measurements is a frequently occurring
phenomenon, however, the vast majority of tracking algorithms
in the literature assume that each target generates independent
measurements. Allowing for the possibility of measurement merg-
ing increases the computational complexity of the multi-target
tracking problem, and limited computing power has been a major
factor in the dominance of algorithms that assume independent
measurements. In the presence of merged measurements, these
algorithms suffer from performance degradation, usually due
to premature track termination. In this paper, we develop a
principled Bayesian solution to this problem based on the theory
of random finite sets (RFS), and a tractable implementation based
on the recently proposed generalised labelled multi-Bernoulli
(GLMB) filter. The performance of the proposed technique
is demonstrated by simulation of a multi-target bearings-only
tracking scenario, where measurements become merged due to
finite resolution effects.

Index Terms—Multi-target tracking, merged measurements,
unresolved targets, random finite sets

I. INTRODUCTION

Most traditional multi-target tracking algorithms assume
that the sensor generates an independent measurement for each
target. In some cases, this assumption is reasonable since it
leads to computationally efficient algorithms that are scalable
to large numbers of targets. However, most real world sensors
violate this assumption when the target measurements draw
close to each another. In these cases, sensors often generate
fewer measurements than there are targets present. If the
tracker assumes independent measurements, it will usually
conclude that some targets have disappeared, when in fact their
measurements have been merged. For example, passive sonar
sensors can have beams of significant width, and multiple
targets falling within the same beam may produce a merged
measurement. Another example is in computer vision, where
detection algorithms may produce merged measurements for
objects that appear close together in an image.

It is fundamentally important to investigate algorithms that
can deal with this problem, because real world sensors often
produce merged observations, and trackers that assume inde-
pendent measurements for tractability reasons perform poorly
when this occurs. Traditional classes of multi-target tracking
algorithms have been adapted to handle merged measurements,
including Joint Probabilistic Data Association (JPDA) [1], [2],
Multiple Model JPDA [3], [4], Integrated PDA [5], Multiple
Hypothesis Tracking (MHT) [6], and Probabilistic MHT [7].

Although these algorithms are based on Bayesian techniques,
their relationship to the full multi-object density has not been
clearly established.

Recently, the concept of random finite sets (RFS) has
received a great deal of attention, as it provides a principled
framework for deriving algorithms for estimating the states for
an unknown and time-varying number of objects, based on
noisy measurements with false alarms and missed detections.
One of the first algorithms to be derived using this framework
was the Probability Hypothesis Density (PHD) filter, and in
[8] Mahler proposed that the PHD filter could be applied to
unresolved targets by modelling the multi-object state as an
RFS of point clusters. This approach has some limitations,
which shall be discussed in Section IV.

One critisism of the RFS framework has been that it
yields algorithms that do not maintain target labels over time
(performing multi-object filtering as opposed to tracking). It
was shown in [9] that the RFS framework does admit target
labelling, and a computationally feasible multi-target tracker
for the standard sensor model was derived, known as the
generalised labelled multi-Bernoulli (GLMB) filter.

In this paper, we generalise the GLMB filter to a sensor
model that includes merged measurements, thereby making
it suitable for application to a wider variety of real world
problems. We have achieved this by deriving a multi-target
likelihood function that takes into account the possible merg-
ing of target generated measurements, and a tractable solution
to the multi-target posterior, by considering feasible partitions
of the target set, and the feasible assignments of measurements
to groups within these partitions. An advantage of our ap-
proach is that it can be parallelised to enable potential real-time
implementation. To our knowledge, this is the first time that
RFS principles have been used to derive and implement a full
multi-object tracker that accommodates merged measurements.

The paper is organised as follows. Section II provides some
background on labelled random finite sets and their application
to tracking with standard sensor models. In Section III we
formulate a sensor model that includes measurement merging.
In Section IV we use labelled random finite sets to develop
a filter for this sensor model, and Section V presents an
approximation technique to aid in its tractable implementation.
Section VI contains simulation results for a bearings-only
multi-target tracking scenario, and finally, some concluding
remarks are given in Section VII.
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II. BACKGROUND: RFS-BASED TRACKING WITH
STANDARD SENSOR MODELS

Random finite sets provide a mathematically rigorous
framework for developing Bayesian multi-object estimation
algorithms. One of the first algorithms to be proposed based
on this was the probability hypothesis density (PHD) filter,
which achieves a tractable approximation to the full multi-
object Bayes recursion by propagating only the first moment
of the multi-object density. This was followed by the cardi-
nalised PHD (CPHD) filter, which propagates the probability
distribution of the number of targets, in addition to the first
moment of the density. Another type of algorithm based on
random finite sets involves approximating the density as a
multi-Bernoulli RFS, known as multi-object multi-Bernoulli
(MeMBer) filtering. A common feature of the PHD and multi-
Bernoulli approaches is that they do not require explicit data
association. However, a significant drawback is that they do
not inherently produce target tracks, instead providing a set of
unlabelled point estimates at each time step. A recently pro-
posed technique for addressing this problem, which maintains
the mathematical rigor of the RFS framework, is the concept
of labelled random finite sets [9]. This technique involves
assigning a distinct label to each element of the target set,
so that the history of each object’s trajectory can be naturally
identified.

In this work, we are interested in algorithms that can
produce continuous tracks, so we restrict our attention to
methods based on labelled random finite sets. In [9], an
algorithm was proposed for solving the standard multi-object
tracking problem, based on a type of labelled RFS called ‘gen-
eralised labelled multi-Bernoulli’ (GLMB). We now review
the main points of this technique, and in the next section we
propose a generalisation which will enable it to handle merged
measurements.

We begin by introducing some notation and definitions relat-
ing to labelled random finite sets. The multi-object exponential
of a real valued function h raised to a set X is defined as

[h (·)]X =
∏
x∈X

h (x) (1)

where h∅ = 1, and the elements of X may be of any type
such as scalars, vectors, or sets, provided that the function
h(·) takes an argument of that type. The generalised Kronecker
delta function is defined as

δY (X) =

{
1, if Y = X

0, otherwise
(2)

where again, X and Y may be of any type, such as scalars,
vectors, or sets.

Definition 1. A labelled RFS X with state space X and
discrete label space L, is an RFS on X × L, such that the
labels within each realisation are always distinct. That is, if
LX is the set of unique labels in X , and we define the distinct

label indicator function as

∆ (X) =

{
1, if |LX | = |X|
0, if |LX | 6= |X|

(3)

then a labelled RFS X always satisfies ∆ (X) = 1.

Definition 2. A generalised labelled multi-Bernoulli (GLMB)
RFS is a labelled RFS with state space X and discrete label
space L, which satisfies the probability distribution

π (X) = ∆ (X)
∑
c∈C

w(c) (LX)
[
p(c) (·)

]X
(4)

where C is an arbitrary index set, and w(c) (LX) and p(c) (x, l)
satisfy ∑

c∈C
w(c) (L) = 1 (5)∫

x∈X
p(c) (x, l) dx = 1. (6)

A. Multi-object Transition Kernel
LetX be the labeled RFS of objects at the current time with

label space L. A particular object (x, l) ∈ X has probability
pS (x, l) of surviving to the next time with state (x+, l+)
and probability density f (x+|x, l) δl (l+), and probability
qS (x, l) = 1− pS (x, l) of being terminated. Thus, the set S
of surviving objects at the next time is distributed according
to

fS (S|X) = ∆ (S) ∆ (X) 1LX
(LS) [Φ (S; ·)]X (7)

where

Φ (S;x, l) =
∑

(x+,l+)∈S

δl (l+) pS (x, l) f (x+|x, l)

+ (1− 1LS
(l)) qS (x, l) . (8)

where f (x+|x, l) is the single target transition kernel. Now
let B be the labelled RFS of new born objects with label
space B, where L∩B = ∅. Since the births must have distinct
labels, and assuming that their states are independent, B is
distributed according to

fB (B) = ∆ (B)w (LB) [pB (·)]B (9)

where pB (·) is the single target birth density. The overall
multi-object state at the next time step is the union of surviving
and new born objects, i.e. X+ = S ∪ B. The label spaces
L and B are disjoint, and the states of new born objects
are independent of surviving objects, hence S and B are
independent. The multi-object transition kernel is thus defined
by

f (X+|X) =
∑

S⊆X+

fS (S|X)fB (X+ − S) . (10)

It is straightforward to show that the summation in (10)
contains only one non-zero term, which occurs when S =
X+ ∩ (X× L). Hence the transition kernel reduces to

f (X+|X) = fS (X+ ∩ (X× L) |X)fB (X+ − X× L) .
(11)
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It was shown in [9] that a GLMB density of the form (4)
is closed under the Chapman-Kolmogorov prediction equation
with the transition kernel defined in (11).

B. Standard Multi-object Observation Model

Let X be the labelled RFS of objects that exist at the ob-
servation time. A particular object (x, l) ∈X has probability
pD (x, l) of generating a detection z with likelihood g (z|x),
and probability qD (x, l) = 1−pD (x, l) of being misdetected.
Let D be the set of target detections. Assuming the elements
of D are conditionally independent, D is a multi-Bernoulli
RFS distributed according to

πD (D|X) = {(pD (x, l) , g (·|x)) ; (x, l) ∈X} (D) . (12)

LetK be the set of clutter observations, which are independent
of the target detections. We model K as a Poisson RFS with
intensity κ(·), hence K is distributed according to

πK (K) = e−〈κ,1〉κK . (13)

The overall multi-object observation is the union of target
detections and clutter observations, i.e. Z = D∪K. Since D
and K are independent, the multi-object likelihood is defined
by

g (Z|X) =
∑
D⊆Z

πD (D|X)πK (Z −D) . (14)

As demonstrated in [10], this can be equivalently expressed as

g (Z|X) = e−〈κ,1〉κZ
∑
θ∈Θ

[ψZ (·; θ)]X (15)

where Θ is the set of all one-to-one mappings of labels in X
to measurement indices in Z,

Θ = {θ : LX → {0 : |Z|}} (16)

such that [θ (i) = θ (j) > 0]⇒ [i = j], and ψZ (·; θ) is given
by

ψZ (x, l; θ) =


pD(x,l)g(zθ(l)|x,l)

κ(zθ(l))
, θ (l) > 0

qD (x, l) , θ (l) = 0
(17)

It was demonstrated in [9] that a GLMB density of the form
(4) is closed under the Bayes update with likelihood function
defined by (15).

III. A SENSOR MODEL FOR MERGED MEASUREMENTS

It is often the case that when targets appear close together
in the measurement space, it may not be possible for a sensor
to generate separate measurements for each target. Instead,
a group of closely spaced targets may generate a single
measurement consisting of contributions from all targets in the
group. This is in contrast to the standard sensor model, which
assumes that all targets generate measurements independently,
regardless of their position relative to each other. In what
follows, we describe the details of a sensor model in which
merged measurements may occur.

Let X be the single-object state space, and M the sen-
sor measurement space. At time index k, consider a sin-
gle sensor with known control input Uk, and let Xk =

{xk,1,xk,2, ...,xk,M} represent the unknown multi-target
state, in which xik ∈ X for i = 1..M . Let h (xtk, Uk) be
the standard measurement function for target t, such that

h (xk,t, Uk) : X→M. (18)

Let C = {c1, c2, ...cNC} be a set of disjoint cells covering M,
NC⋃
i=1

ci = M (19)

ci ∩ cj = ∅, ∀i 6= j (20)

and let Tk,i be the set of targets whose true state falls in cell
i at time k,

Tk,i = {j : j ∈ 1.. |Xk| , h (xk,j , Uk) ∈ ci} . (21)

Then cell i produces the following measurement

zk,i =


1
|Tk,i|

∑
j∈Ti

h (xk,j , Uk) , |Tk,i| > 0

∅, |Tk,i| = 0
(22)

with probability pD (Tk,i), and zk,i = ∅ with probability
qD (Tk,i) = 1 − pD (Tk,i). The set of target generated mea-
surements at time k is thus

Θk =

NC⋃
i=1

zk,i. (23)

In addition, at each time k, the sensor generates a Poisson RFS
of false measurements denoted Kk, the intensity of which is
known at all times. The overall set of measurements can thus
be expressed as

Zk = Θk ∪Kk (24)

IV. RFS-BASED TRACKING WITH MERGED
MEASUREMENTS

A. Multi-object Likelihood with Merged Measurements

In [10], Mahler proposed a technique to handle unresolved
targets using the RFS framework. It was based on modelling
the multi-target state as a set of point clusters, where each
cluster has a location in the state space, and a number
determining how many targets are effectively co-located at that
point. The resulting likelihood function was defined in terms
of a sum over partitions of the measurement set, making it
computationally very demanding. A PHD filter based on this
model was proposed in [8], however, a working implementa-
tion has not been developed.

The point cluster model is intuitively appealing in cases
where measurements may only merge when the targets are
close together in the state space. However, this implicitly
assumes that merging depends on the target states only, and
the sensor control input has no influence. There are cases in
which this assumption is too restrictive, such as bearings-only
tracking, and visual tracking. In these cases, targets that cannot
be resolved along the line of sight may be separated by a
considerable distance in the state space. The sensor’s position
clearly has an impact on whether the measurements become
merged, but this cannot be accounted for using point clusters.
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To handle these cases, we need a likelihood function that
considers that the targets may give rise to merged measure-
ments, not only when they are nearby in the state space, but
more generally when they are nearby in the measurement
space. To achieve this, we consider partitions of the target
set, where each group of targets within a partition represents
a merged group. This leads to the following form for the
likelihood of observing a measurement set Z given a target
set X:

g (Z|X) =
1

|P (X)|
∑

U∈P(X)

g̊ (Z|U) (25)

where P (X) is the set of all partitions of X , and g̊ (Z|U) is
the measurement likelihood conditioned upon the targets being
observed according to partition U . The latter is obtained by
generalising the standard likelihood in (15) to target groups as
follows

g̊ (Z|U) = e−〈κ,1〉κZ
∑
θ∈ΘU

[
ψ̌Z(·; θ)

]U
(26)

where ΘU is defined as the set of all one-to-one mappings of
target groups in U to measurement indices in Z,

ΘU =

{
{θ : U → {0 : |Z|}} if U ∈ P (X)

∅ if U /∈ P (X)
(27)

where [θ (X) = θ (Y ) > 0] ⇒ [X = Y ], and ψ̌Z (Y ; θ) is a
‘group likelihood’ defined by

ψ̌Z (Y ; θ) =


p̌D(Y )ǧ(zθ(Y )|Y )

κ(zθ(Y ))
, θ (Y ) > 0

q̌D(Y ), θ (Y ) = 0
(28)

where p̌D (Y ) is the detection probability for group Y ,
q̌D (Y ) = 1−p̌D (Y ) is the misdetection probability for group
Y , and ǧ

(
zθ(Y )|Y

)
is the likelihood of measurement zθ(Y )

given group Y . Note that in (26), the exponent U is a set
of target sets, and the base is a real valued function whose
argument is a target set. Substituting (26) into (25) yields the
likelihood function

g (Z|X) =
e−〈κ,1〉κZ

|P (X)|
∑

U∈P(X)
θ∈ΘU

[
ψ̌Z (·; θ)

]U
. (29)

B. General Form for the Tracker

We now define a general form for the multi-object density,
and demonstrate that it is closed under both the multi-object
Champan-Kolmogorov prediction with transition kernel (11),
and the Bayes update with likelihood function (29).

Definition 3. A labelled RFS mixture density on state space
X and discrete label space L, is a density of the form

π (X) = ∆ (X)
∑
c∈C

w(c) (LX) p(c) (X) (30)

where ∑
c∈C

∑
L⊆L

w(c) (L) = 1, (31)

p(c) (X) is symmetric in the elements of X , and
p(c) ((·, l1) , ... (·, ln)) is a joint pdf in Xn.

Proposition 4. If the multi-object prior is a labelled RFS
mixture density with probability distribution of the form (30),
then the predicted multi-object density under the transition
kernel (11) is also a labelled RFS mixture density with
probability distribution given by

π+ (X+) = ∆ (X+)
∑
c∈C

∑
L⊆L

w
(c)
+,L

(
LX+

)
p

(c)
+,L (X+) (32)

where

w
(c)
+,L (J) = 1L (J ∩ L)wB (J − L)w(c) (L) η

(c)
S (L) (33)

p
(c)
+,L (Y ) = [pB (·)]Y−X×L p(c)

S,L (Y ∩ X× L) (34)

p
(c)
S,L (Y ) =

∫
p

(c)
L

(
x1, ..., x|L|

) |L|∏
i=1

Φ (Y ;xi, li) dx1...dx|L|

η
(c)
S (L)

(35)

η
(c)
S (L) =

∫ ∫
p

(c)
L

(
x1, ..., x|L|

)
|L|∏
i=1

Φ (Y ;xi, li) dx1...dx|L|δY (36)

Proposition 5. If the prior is a labelled RFS mixture den-
sity with probability distribution of the form (30), then the
posterior multi-object density under the likelihood function
(29) is also a labelled RFS mixture density with probability
distribution given by

π (X|Z)

= ∆ (X)
∑
c∈C

∑
U∈P(X)
θ∈ΘU

w
(c,U,θ)
Z (LX) p(c,U,θ) (X|Z) (37)

where

w
(c,U,θ)
Z (L) =

1
|P(L)|w

(c) (L) η
(c,U,θ)
Z (L)∑

c∈C

∑
J⊆L

∑
U∈P(J)
θ∈ΘU

1
|P(J)|w

(c) (J) η
(c,U,θ)
Z (J)

(38)

p(c,U,θ) (X|Z) =

[
ψ̌Z (·; θ)

]U
p(c) (X)

η
(c,U,θ)
Z (LX)

(39)

η
(c,U,θ)
Z (L) =

∫ [
ψ̌Z (·; θ)

]U
p(c)

(
x1, ...x|L|

)
dx1...dx|L|

(40)

Proofs of propositions 4 and 5 are omitted due to space lim-
itations. Although an exact implementation may be possible,
it would quickly become intractable because there is no clear
way of truncating the sum over the space of measurement-to-
group associations ΘU . The reason is that each component in
the overall density (30) consists of a joint density encompass-
ing all targets. Thus there may be dependencies between target
groups, and standard ranked assignment techniques cannot be
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applied. In the next section we propose an approximation that
avoids this problem, allowing us to tractably implement a
multi-target Bayes filter for the merged measurement likeli-
hood. The family of labeled RFS mixture densities can be
regarded as a conjugate prior for the merged measurement
likelihood function, however, we refrain from using this term
because this family covers almost every labeled multi-target
density in practice, as well as being generally numerically
intractable.

V. APPROXIMATE IMPLEMENTATION

The exact form of the tracker, as specified in propositions
4 and 5, is intractable due to the presence of joint densities
in the prior. To derive an algorithm that can be implemented
in practice, we make the assumption that the targets are a-
priori independent, thus reducing the prior from a labelled RFS
mixture density, to a generalised labelled multi-Bernoulli RFS.
After applying the merged measurement likelihood to this
prior, we obtain a posterior density which is no longer in the
form of a GLMB, i.e. the GLMB is not a conjugate prior with
respect to the proposed likelihood. However, by performing
marginalisation on the joint densities in the posterior, we can
obtain an approximate posterior in GLMB form, such that a
recursive filter may be implemented (as shown in subsection
V-B). We refer to this as the GLMB-M filter.

A. Prediction

The first step is to compute the density of surviving targets,
which is done by iterating through the components of the
previous density, generating a set of highly weighted predicted
components as we go. The predicted component weight is
determined by the product of the survival/termination probabil-
ities of its constituent targets, thus we can list the components
in order of weight using a k-shortest paths algorithm. To do
this, we generate the following n × 2 matrix, where n is the
number of targets in the current component, and the negative
logarithm is used to transform the problem from maximum-
product to minimum-sum form

C = − log

 pS
(
X(n,i,1)

)
1− pS

(
X(n,i,1)

)
...

...
pS
(
X(n,i,n)

)
1− pS

(
X(n,i,n)

)
 . (41)

This matrix is used to create a directed graph, where each
element is a node, each node is connected to both nodes in the
following row, and the cost associated with each edge is the
value of the node that the edge points to. K-shortest paths [11]
is then applied in order to list the cheapest paths from top to
bottom. The rows in which column 1 was visited correspond to
survivals, and rows in which column 2 was visited correspond
to deaths. A new component is formed from the surviving
targets, with their pdfs propagated to the current time using
the single target transition kernel. The new component weight
is the product of the previous weight and e−c, where c is the
cost of the path used to generate that component.

In addition to predicting the density of surviving targets,
we need to generate a density for newborn targets. In the
general case, targets may appear anywhere within the sensor’s
detection region. It is therefore important that the birth model
not restrict the locations where new tracks can be initiated.
A general measurement driven birth model would allow any
number of measurements on any scan to initiate new tracks.
However, this approach is very computationally demanding,
as it requires enumerating all subsets of the measurements on
each scan. Instead, we make the following three restrictions
to reduce computation to a more managable level:

1) a maximum of one new target can appear on each scan,
2) measurements that are likely to have originated from

existing targets cannot originite from newborn targets,
3) new targets are always detected on their first two scans.

Applying these can drastically reduce the number of terms
in the birth density, thereby significantly cutting the computa-
tional requirements. Once the survival and birth densities have
been computed, their product is taken, which yields the overall
predicted multi-target density.

B. Update
For a prior density in the form a GLMB as in (4), applying

the likelihood function (29) yields a posterior which is a
labelled RFS mixture density with probability distribution
given by

π (X|Z) (42)

= ∆ (X)
∑
c∈C

∑
U∈P(X)
θ∈ΘU

w
(c,U,θ)
Z (LX)

[
p(c,U,θ) (·|Z)

]U(X)

where

w
(c,U,θ)
Z (L) =

1
|P(L)|w

(c) (L)
[
η

(c,U,θ)
Z (·)

]U(L)

∑
c∈C

∑
J⊆L

∑
U∈P(J)
θ∈ΘU

1
|P(J)|w

(c) (J)
[
η

(c,U,θ)
Z

]U(J)

(43)

p(c,U,θ) (Y |Z) =
p̃(c,U) (Y ) ψ̃Z (Y ; θ)

η
(c,U,θ)
Z (LY )

(44)

η
(c,U,θ)
Z (L) =

〈
p̃(c,U) (·, L) , ψ̃Z (·, L; θ)

〉
(45)

ψ̃Z (Y ; θ) =

{
q̃D (Y ) , θ (Y ) = 0

g̃
(
zθ(Y )|Y

)
p̃D (Y ) , θ (Y ) > 0

(46)

The derivation is omitted due to space limitations. In order
to bring the posterior back to the required GLMB form, we
marginalise the joint densities within each component of the
labelled RFS mixture density as follows

p(c,U,θ) (Y |Z) ≈
[
p(c,U,θ)
m (·|Z)

]Y
(47)

p(c,U,θ)
m (x, l|Z) =

∫
p(c,U,θ) (Y |Z) δ (Y − {(x, l)}) (48)
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This allows us to make the following approximation, since
the set of joint densities representing the groups in partition
U (X) reduces to a set of independent densities representing
the targets in X ,[

p(c,U,θ) (·|Z)
]U(X)

≈
[
p(c,U,θ)
m (·|Z)

]X
. (49)

This leads to the following GLMB approximation to the
posterior multi-object density

π (X|Z) (50)

≈ ∆ (X)
∑
c∈C

∑
U∈P(X)
θ∈ΘU

w
(c,U,θ)
Z (LX)

[
p(c,U,θ)
m (·|Z)

]X
.

The procedure for approximating (50) involves generating
a set of posterior components for each prior component,
by enumerating the feasible partitions and measurement-to-
group assignments. Note that this can be easily parallelised,
since there is no dependency between prior components. The
maximum overall number of components (denoted Nmax),
which is set as a parameter, is split up among all possible
cardinalities, such that each cardinality c ∈ 1..M is allowed to
generate Nc posterior components. We have chosen to do this
based on a Poisson distribution centered around the mean prior
cardinality, which ensures a reasonable spread of components,
allowing for target births and deaths. We then split up each
Nc among the prior components of cardinality c, such that
component (c, k) is allocated a number Nc,k, proportional to
its prior weight. Since it is usually impossible to do this exactly
for integer numbers of components, we use a randomised
weighted allocation algorithm.

A brute force approach to computing (50) would list all
partitions of the target set, and generate assignments of the
measurements to groups within each partition. However, since
we are limited in the number of terms we can compute, we
must find a way to efficiently disregard insignificant compo-
nents. Since targets often appear in clusters, many partitions
may be very unlikely, and therfore do not warrant inclusion
in the posterior. For each component, we compute clusters of
the target set (i.e. groups which have reasonable probability
of being unresolved), and enumerate the partitions for each
cluster. These are then combined across clusters by taking the
Cartesian product, yielding the feasible set of global partitions.

We now evaluate a score function, denoted γ (·), for each
global partition, which is used to allocate the number of
measurement-to-group associations to generate. The definition
of γ (·) will be problem-dependent, as it needs to capture
the relative likelihood that a set of targets will be observed
according to different groupings. For the purposes of this study
we assume a relatively simple model, such that on average, the
measurements will be merged if their separation is less than
WR. We may argue that a partition is more likely if the targets
within each group are clustered within distance WR of each
other, and the distances between groups is greater than WR.
We therefore define the score function as

γ (X,U) = min

(
Dmin

({
Ȳ ;Y ∈ U (X)

})
WR

, 1

)2

(51)

×
∏

Y ∈U(X)

C

(
max

(
Dmax(Y )

WR
, 1

)−1

,
1

2

)

where Ȳ is the mean of the set Y , Dmin(Y ) and Dmax (Y ) are
the minimum and maximum pairwise distances between points
in Y , and C is a cutoff function defined as C (x, y) = x when
x ≥ y, and C (x, y) = 0 when x < y. The first term ensures
that the distance between the means of any pair of groups
in U must be greater than WR, and the likelihood increases
as the square of the minimum distance between groups. The
second term enforces that any group which is spread over a
distance of more than 2WR cannot be merged, and that any
group which is spread over a distance of less than WR has
maximum likelihood of being merged.

Having computed the partition scores using (51), the num-
ber of allocated components Nc,k is then divided among
them proportionally by carrying out a randomised weighted
allocation. The number allocated to partition U of the k-
th component of cardinality c is denoted Nc,k,U . We then
proceed to compute the terms of the posterior by generating
ranked measurement-to-group assignments for each partition
using Murty’s algorithm [12]. The cost matrix for a set of
targets X and a particular partion U ∈ P (X), is of the form
C = [D;M ], where D is a |U| × |Z| matrix with elements

Di,j = − log

(
pD(U (i))ǧ

(
z(j)|U (i)

)
κ
(
z(j)
) )

(52)

and M is a |U| × |U| matrix with diagonal elements Mi,i =
− log

(
qD(U (i)

)
, and all off-diagonal elements set to ∞.

In the above, U (i) denotes the i-th group in partition U .
For each assignment generated by Murty, we create a new
posterior component, consisting of one updated joint density
for each group of targets according to (44)-(46). Finally, we
approximate the posterior as a GLMB by marginalising the
joint densities for each target according to (47)-(49)

To extract the track estimates from the posterior, we find
the maximum a-posteriori cardinality estimate, and then the
highest weighted component with that cardinality. The track
labels within the selected component are compared to a list
of previously confirmed tracks. Tracks that have already been
confirmed are updated with a new state extracted from the
corresponding single target pdf, and those that have not are
used to initiate new tracks.

To make the algorithm efficient, we prune the posterior
density after each update so that insignificant components are
removed. There are two conditions under which a component
is retained. The first is if the component is weighted in the top
Ntot overall, and its ratio to the maximum weighted compo-
nent is less than a threshold Rmax. Alternatively, a component
is retained if it is in the top Ncmin for its cardinality.
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VI. SIMULATION RESULTS

We now demonstrate the performance of the merged mea-
surement GLMB filter on a simulated multi-target passive
sonar tracking scenario. The sensor generates noisy bearings-
only measurements with false alarms and misdetections, and
undergoes two manoeuvres to ensure that the target states
become observable over the course of the simulation. The
scenario involves multiple crossing targets, each following
a white noise acceleration dynamic model. The target state
space is defined in terms of 2D Cartesian position and velocity
vectors

x =
[
x y ẋ ẏ

]T
(53)

and all targets follow the dynamic model

xk+1 = Fxk + Γwk (54)

F =

[
1 T
0 1

]
⊗ I2, Γ =

[
T 2/2
T

]
⊗ I2 (55)

where T is the sensor sampling period, andwk ∼ N (0,Q) is a
2×1 independent and identically distributed Gaussian process
noise vector with Q = σ2

wI2 where the standard deviation of
the target acceleration is σw = 10−3m/s2.

The measurements are simulated using the scheme de-
scribed in Section III, with single target measurement function

h (xt,xs) = arctan

(
xt − xs
yt − ys

)
. (56)

For the purposes of this analysis, we model the pdf of each
target using a single Gaussian, and the extended Kalman filter
(EKF) is used to perform the measurement updates. It is
clearly possible to use other types of non-linear filters such
as the unscented Kalman filter or cubature Kalman filter, or
to model the target pdfs using more accurate representations
such as Gaussian mixtures or particle distributions. These
techniques may yield some improvement, but this analysis is
beyond the scope of the paper.

The scenario consists of 4 targets running parallel to each
other, with geometry as shown in Figure 2. One target is
present at the beginning, with another three arriving during
the first 250 seconds, and three dying during the last 400
seconds. Between time 1000 and 1400, the bearings cross
each other, and their measurements become merged. The
sensor sampling period is 5 seconds, measurement noise has a
standard deviation of 0.5 degrees, resolution cell width is 2.5
degrees, detection probability is 0.98, and clutter is uniformly
distributed on the interval [0, 2π] with a Poisson cardinality
distribution with a mean of 40 points per scan. A single
realisation of the measurements is shown in Figure 1.

The filter generates a maximum of Nmax = 1000 compo-
nents during the update, which is pruned back to Ntot = 100
(with Ncmin = 10, and Rmax = 10−10) before processing the
next scan. Both filters were implemented in C++, and executed
on an Intel Core i7 2600 processor. No attempt at parallelising
the generation of components has been made.

Figure 2a shows the tracks from a single run when the
standard GLMB filter is applied in the presence of merged

measurements. When the measurements are merged, the filter
drops three tracks to account for the ‘missing’ measurements.
When the targets are resolved again, new tracks (with a default
prior pdf) are initiated on those that were dropped. Since the
prior is quite uninformative, and no further sensor manoeuvres
are carried out to re-establish observability, the localisation
performance is severely degraded. Figure 2b shows the track
output from the GLMB-M filter for the same measurement
data. This time, all four tracks are maintained through the
crossing, resulting in significantly better localisation and car-
dinality estimation performance. Note that localisation is poor
during the early stages of the scenario, since the targets are
not observable until the sensor performs its first manoeuvre.
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Figure 1. Simulated bearing measurements with merging. The merged
measurements can be seen in the inset, which shows fewer than four target
generated measurements, despite the fact that all four targets are still present.

Figure 3a shows the average optimal subpattern assignment
(OSPA) distance [13] (with cutoff 1 km and order 2) between
the true and estimated target sets for the two filters over 100
Monte Carlo runs. To avoid biassing the results, a different
random offset is applied to the location of the cell boundaries
on each run. The standard GLMB performs poorly since
it cannot account for the merged measurements. Whenever
two or more targets produce a merged measurement, tracks
become prematurely terminated, which is clearly evident from
the average cardinality estimates shown in Figure 3b. The
GLMB-M performs well in this scenario, since it is able
to reliably maintain tracks when the measurements become
merged. By considering the possible groupings of the target
set in the measurement likelihood calculation, the algorithm
is capable of assigning a single measurement to a group of
targets, thereby keeping all tracks in that group alive.

The execution time for the two filters is shown in Figure 3c.
The GLMB-M filter has a significanly higher peak execution
time due to the enumeration of the feasible partitions for each
component in the density. When targets are closely spaced,
the number of partitions increases significantly, leading to
increased computation. The execution time of the standard
GLMB drops in the presence of merged measurements, but
this is due to the filter incorrectly terminating some of its
tracks, so fewer components are needed in the density.
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(a) GLMB filter with standard likelihood
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(b) GLMB-M filter

Figure 2. Single run with merged measurements

VII. CONCLUSION

We have proposed an algorithm for multi-object tracking
with merged measurements, using the framework of labelled
random finite sets. The algorithm is a generalisation of the
GLMB filter, originally presented in [9] for the standard sensor
model without measurement merging. The exact form of our
proposed merged measurement tracker is intractable, so we
have also proposed an approximation that allows for its practi-
cal implementation. Simulation of a bearings-only multi-target
tracking scenario shows that the algorithm performs well,
however, it remains computationally demanding compared to
the standard GLMB filter. Future work in this area will involve
investigating ways of reducing the computational load whilst
maintaining acceptable tracking performance, and comparing
the performance to some existing techniques for tracking in
the presence of merged measurements.
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