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Abstract

This paper proposes an online multi-object tracking algorithm for image observations using a top-down Bayesian formulation
that seamlessly integrates state estimation, track management, handling of false positives, false negatives and occlusion into a
single recursion. This is achieved by modeling the multi-object state as labeled random finite set and using the Bayes recursion to
propagate the multi-object filtering density forward in time. The proposed filter updates tracks with detections but switches to image
data when detection loss occurs, thereby exploiting the efficiency of detection data and the accuracy of image data. Furthermore the
labeled random finite set framework enables the incorporation of prior knowledge that detection loss in the middle of the scene are
likely to be due to occlusions. Such prior knowledge can be exploited to improve occlusion handling, especially long occlusions
that can lead to premature track termination in on-line multi-object tracking. Tracking performance is compared to state-of-the-art
algorithms on synthetic data and well-known benchmark video datasets.
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1. Introduction

In a multiple object setting, not only do the states of the ob-
jects vary with time, but the number of objects also changes due
to objects appearing and disappearing. In this work, we con-
sider the problem of jointly estimating the time-varying num-
ber of objects and their trajectories from a stream of noisy im-
ages. In particular, we are interested in multi-object tracking
(MOT) solutions that compute estimates at a given time using
only data up to that time. These so-called online solutions are
better suited for time-critical applications.

A critical function of a multi-object tracker is track manage-
ment, which concerns track initiation/termination and track la-
beling or identifying trajectories of individual objects. Track
management is more challenging for online algorithms than for
batch algorithms. Usually, track initiation/termination in on-
line MOT algorithms is performed by examining consecutive
detections in time [1], [2]. However, false positives generated
by the background, compounded by false negatives (including
those from object occlusions), can result in false tracks and lost
tracks, especially in online algorithms. False negatives also
cause track fragmentation in batch algorithms as reported in [3],
[4], [5] [6]. With the exception of the recent network flow [7]
techniques, track labels are assigned upon track initiation, and
maintained over time until termination. An online multi-object
Bayesian filter that provides systematic track labeling using la-
beled random finite set (RFS) was proposed in [8].

In most video MOT approaches, each image in the data se-
quence is compressed into a set of detections before a filter-
ing operation is applied to keep track of the objects (includ-
ing undetected ones). Typically, in the filtering module, mo-
tion correspondence or data association is first determined fol-

lowed by the application of standard filtering techniques such as
Kalman or sequential Monte Carlo [1, 2]. The main advantage
of performing detection before filtering is the computational ef-
ficiency in the compression of images into relevant detections.
The main disadvantage is the loss of information, in addition to
false negatives and false positives, especially in low signal to
noise ratio (SNR) applications.

Track-before-detect (TBD) is an alternative approach, which
by-passes the detection module and exploits the spatio-
temporal information directly from the image sequence. The
TBD methodology is often required in tracking applications for
low SNR image data [9], [10], [11], [12]. In visual tracking ap-
plications, perhaps the most well-known TBD MOT algorithm
is BraMBLe [13]. Other visual MOT algorithms that can be cat-
egorized as TBD include [14], [15] which exploit color-based
observation models, [16], [2], which exploit multi-modality of
distributions, and [17] which uses multi-Bernoulli random fi-
nite set models. While the TBD approach minimizes informa-
tion loss, it is computationally more expensive. So far it is not
clear how we could simultaneously process detection and im-
age measurements to exploit their complementary advantages,
in a principled manner.

In this paper, we develop an efficient online MOT algorithm
for video data that exploits the advantages of both detection-
based and TBD approaches to improve performance while re-
ducing the computational cost. In the visual MOT literature,
simultaneous consideration of detections and image features
were proposed in ad-hoc manners [1], [5], and it is not clear
how to combine them in a principled way. The innovation of
our proposed algorithm is the adaptive update of tracks with
detections (for efficiency), or with local regions of the input
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image (to minimize information loss and improve accuracy). In
addition, the proposed visual MOT filter seamlessly integrates
state estimation, track management, clutter rejection, false neg-
atives and occlusion handling, (which are traditionally separate
functionalities) in a single Bayesian recursion.

The key technical contribution is a hybrid multi-object mea-
surement model that simultaneously accommodates detections
and image observations. Conceptually, this model is a sim-
ple generalization of the standard multi-object measurement
model [18] and the separable model for image measurement
[10]. Such a simple construct, however, enables us to simulta-
neously exploit the efficiency of the detection-based approach
and the accuracy of TBD-based approach. Specifically, using
the labeled RFS framework for multi-object estimation [8], we
prove conjugacy of the Generalized Labelled Multi-Bernoulli
(GLMB) distributions with respect to the likelihood function of
the proposed measurement model. Using this conjugacy result,
and the labeled RFS estimation formulation [8], we develop an
analytic Bayesian MOT filter that avoids processing the entire
image so as to reduce computational costs, while at the same
time make use of relevant local information at the image level
to reduce the effect of false negatives as well as tracking errors.

Due to the labeled RFS filtering formulation, the proposed
MOT filter addresses state estimation, track management, clut-
ter rejection, false negatives and occlusion handling, in one sin-
gle recursion. Generally, an online MOT algorithm would ter-
minate a track that has not been detected over several frames.
In many visual MOT applications however, it is observed that
away from designated exit regions such as scene edges, the
longer an object is in the scene, the less likely it is to disap-
pear, see for example [19], [20] which exploit theses so-called
closed world assumptions. Intuitively, this observation can be
used to delay the termination of tracks that have been occluded
over an extended period, so as to improve occlusion handling.
The labeled RFS framework provides a principled and inexpen-
sive means to exploit this observation for improved occlusion
handling.

The remainder of the paper is structured as follows. The
Bayesian filtering formulation of the MOT problem using la-
beled RFS is given in Section 2, followed by details of the pro-
posed solution in Section 3. Performance evaluation of the pro-
posed MOT filter against state-of-the-art trackers is presented
in Section 4, and concluding remarks are given in Section 5.

2. Bayesian Multiple Object Tracking

This section outlines the RFS framework for MOT that ac-
commodates uncertainty in the number of objects, the states
of the objects and their trajectories. The salient feature of this
framework is that it admits direct parallels between traditional
Bayesian filtering and MOT. The modeling of the multi-object
state as an RFS in Subsection 2.1 enables Bayesian filtering
concepts to be directly translated to the multi-object case in
Subsection 2.2. Subsection 2.3 examines the MOT problem in
the presence of occlusion.

Figure 1: 1D multi-object trajectories with labeling

2.1. Multi-object State

To distinguish different object trajectories in a multi-object
setting, each object is assigned a unique label `k that consists
of an ordered pair (t, i), where t is the time of birth and i is
the index of individual objects born at the same time [8]. For
example, if two objects appear in the scene at time 1, one is
assigned label (1,1) while the other is assigned label (1,2), see
Figure 1. A trajectory or track is the sequence of states with the
same label.

Formally, the state of an object at time k is a vector xk =

(xk, `k) ∈ X × Lk, where Lk denotes the label space for objects
at time k (including those born prior to k). Note that Lk is given
by Bk ∪Lk−1, where Bk denotes the label space for objects born
at time k (and is disjoint from Lk−1). Suppose that there are
Nk objects at time k, with states xk,1, ..., xk,Nk . In the context
of MOT, the collection of states, referred to as the multi-object
state, is naturally represented as a finite set

Xk = {xk,1, ..., xk,Nk } ∈ F (X × Lk),

where F (X × Lk) denotes the space of finite subsets of X × Lk.
We denote cardinality (number of elements) of X by |X| and
the set of labels of X, {` : (x, `) ∈ X}, by L(X). Note that
since the label is unique, no two objects have the same label,
i.e. δ|X|(|L(X)|) = 1. Hence ∆(X) , δ|X|(|L( X)|) is called the
distinct label indicator.

For the rest of the paper, we follow the convention that
single-object states are represented by lower-case letters (e.g.
x, x), while multi-object states are represented by upper-case
letters (e.g. X, X), symbols for labeled states and their distri-
butions are bold-faced to distinguish them from unlabeled ones
(e.g. x, X, π, etc.), and spaces are represented by blackboard
bold (e.g. X, Z, L, N, etc.). The list of variables Xm, Xm+1, ..., Xn

is abbreviated as Xm:n. We denote a generalization of the Kro-
neker delta that takes arbitrary arguments such as sets, vectors,
integers etc., by

δY [X] ,
{

1, if X = Y
0, otherwise .

For a given set S , 1S (·) denotes the indicator function of S , and
F (S ) denotes the class of finite subsets of S . For a finite set
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X, the multi-object exponential notation f X denotes the product∏
x∈X f (x), with f ∅ = 1. The inner product

∫
f (x)g(x)dx is

denoted by 〈 f , g〉.

2.2. Multi-object Bayes filter

From a Bayesian estimation viewpoint the multi-object state
is naturally modeled as an RFS or a simple-finite point pro-
cess [21]. While the space F (X × Lk) does not inherit the Eu-
clidean notion of probability density, Mahler’s Finite Set Statis-
tic (FISST) provides a suitable notion of integration/density for
RFSs [18, 22]. This approach is mathematically consistent with
measure theoretic integration/density but circumvents measure
theoretic constructs [23].

At time k, the multi-object state Xk is observed as an image
yk. All information on the set of object trajectories conditioned
on the observation history y1:k, is captured in the multi-object
posterior density

π0:k(X0:k |y1:k) ∝
k∏

j=1

g j(y j|X j)f j| j−1(X j|X j−1)π0(X0)

where π0 is the initial prior, g j(·|·) is the multi-object likelihood
function at time j, f j| j−1(·|·) is the multi-object transition density
to time j. The multi-object likelihood function encapsulates the
underlying observation model while the multi-object transition
density encapsulates the underlying models for motions, births
and deaths of objects. Note that track management is incorpo-
rated into the Bayes recursion via the multi-object state with
distinct labels.

MCMC approximations of the posterior density have been
proposed in [24, 25] for detection measurements and image
measurements respectively. Results on satellite imaging appli-
cations reported in [25] are very impressive. However, these
techniques are still expensive and not suitable for on-line appli-
cation.

For real-time tracking, a more tractable alternative is the
multi-object filtering density, a marginal of the multi-object
posterior. For notational compactness, herein we omit the de-
pendence on data in the multi-object densities. The multi-object
filtering density can be recursively propagated by the multi-
object Bayes filter [21], [18] according to the following pre-
diction and update

πk+1|k(Xk+1) =

∫
fk+1|k(Xk+1|Xk)πk(Xk)δXk, (1)

πk+1(Xk+1) =
gk+1(yk+1|Xk+1)πk+1|k(Xk+1)∫

gk+1(yk+1|X)πk+1|k(X)δX
, (2)

where the integral is a set integral defined for any function
f : F (X×Lk)→ R by∫

f(X)δX =

∞∑
i=0

1
i!

∫
f({x1, ..., xi})d(x1, ..., xi).

Bayes optimal multi-object estimators can be formulated by
minimizing the Bayes risk with ordinary integrals replaced by

set integrals as in [22]. One such estimator is the marginal
multi-object estimator [18].

A generic particle implementation of the Bayes multi-object
filter Eq. (1)-(2) was proposed in [23] and applied to labeled
multi-object states in [11]. The Generalized labeled Multi-
Bernoulli (GLMB) filter is an analytic solution to the Bayes
multi-object filter, under the standard multi-object dynamic and
observation models [8].

2.2.1. Standard multi-object dynamic model
Given the multi-object state Xk (at time k), each state

(xk, `k) ∈ Xk either survives with probability PS ,k(xk, `k) and
evolves to a new state (xk+1, `k+1) (at time k + 1) with proba-
bility density fk+1|k(xk+1|xk, `k)δ`k [`k+1] or dies with probability
1 − PS ,k(xk, `k). The set Bk+1 of new objects born at time k + 1
is distributed according to the labeled multi-Bernoulli (LMB)

∆(Bk+1)ωB,k+1(L(Bk+1))pBk+1
B,k+1,

where ωB,k+1(L) =
[
1Bk+1 rB,k+1

]L [
1 − rB,k+1

]Bk+1−L, rB,k+1(`) is
the probability that a new object with label ` is born, and
pB,k+1(·, `) is the distribution of its kinematic state [8]. The
multi-object state Xk+1 (at time k + 1) is the superposition of
surviving objects and new born objects. It is assumed that, con-
ditional on Xk, objects move, appear and die independently of
each other. The expression for the multi-object transition den-
sity fk+1|k can be found in [8, 26]. The standard multi-object
dynamic model enables the Bayes multi-object filter to address
motion, births and deaths of objects.

2.2.2. Standard multi-object observation model
In most applications a designated detection operation D is

applied to yk resulting in a set of points

Zk = D(yk) ∈ Z. (3)

Since the detection process is not perfect, false positives and
false negatives are inevitable. Hence only a subset of Zk cor-
respond to some objects in the scene (not all objects are de-
tected) while the remainder are false positives. The most pop-
ular detection-based observation model is described in the fol-
lowing.

For a given multi-object state Xk, each (x, `) ∈ Xk is either
detected with probability PD,k(x, `) and generates a detection
z ∈ Zk with likelihood gD,k(z|x, `) or missed with probability 1−
PD,k(x, `). The multi-object observation Zk is the superposition
of the observations from detected objects and Poisson clutter
with intensity κk. The ratio

σD,k(z|x, `) ,
gD,k(z|x, `)
κk(z)

(4)

can be interpreted as the detection signal to noise ratio (SNR).
Assuming that, conditional on Xk, detections are independent

of each other and clutter, the multi-object likelihood function is
given by [18], [8, 26]

gk(yk |Xk) ∝
∑

θ∈Θk(L(Xk))

∏
(x,`)∈Xk

ψ(θ(`))
D(yk)(x, `) (5)
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Figure 2: Examples of partitions for five objects

where: Θk(I) is the set of positive 1-1 maps θ : I → {0:|Zk |},
i.e. maps such that no two distinct arguments are mapped to
the same positive value; and

ψ
( j)
{z1:M }

(x, `) =

{
PD,k(x, `)σD,k(z j|x, `), if j = 1:M
1 − PD,k(x, `), if j = 0 . (6)

The map θ specifies which objects generated which detections,
i.e. object ` generates detection zθ(`) ∈ Zk, with undetected
objects assigned to 0. The positive 1-1 property means that θ
is 1-1 on {` : θ(`) > 0}, the set of labels that are assigned
positive values, and ensures that any detection in Zk is assigned
to at most one object.

The standard multi-object observation model enables the
Bayes multi-object filter to address false negatives and false
positives, but not occlusion. It assumes that each object is de-
tected independently from each other, and that a detection can-
not be assigned to more than one object. This is clearly not
valid in occlusions.

2.3. Bayes Optimal Occlusion Handing

By relaxing the assumption that each object is independently
detected, a multi-object observation model that explicitly ad-
dresses occlusion (as well as false negatives and false positives)
was proposed in [27]. The main difference between this so-
called merged-measurement model and the standard model is
the idea that each group of objects (instead of each object) in
the multi-object state generates at most one detection [27]. Fig-
ure 2 shows various partitions or groupings of a multi-object
state with five objects.

A partition UX of a finite set X is a collection of mutually
exclusive subsets of X, whose union is X. The collection of all
partitions of X is denoted by P(X). It is assumed that given a
partition UX, each group Y ∈ UX generates at most one de-
tection with probability PD,k(Y), independent of other groups,
and that conditional on detection generates z with likelihood
gD,k(z|Y).

Let L(UX) denote the collection of labels of the partition
UX, i.e. L(UX) , {L(Y) : Y ∈ UX} (note that L(UX) forms a
partition of L(X)). Let Ξk(L(UX)) denote the class of all posi-
tive 1-1 mappings ϑ : L(UX) → {0:|Zk |}. Then, the likelihood
that a given partition UX of a multi-object state X, generates
the detection set Zk is∑

ϑ∈Ξk(L(UX))

∏
Y∈UX

ψ(ϑ(L(Y)))
Zk

(Y) (7)

where

ψ
( j)
{z1:M }

(Y) =

{
PD,k(Y)σD,k(z j|Y), if j = 1:M
1 − PD,k(Y), if j = 0 ,

with σD,k(z j|Y) = gD,k(z j|Y)/κk(z j) denoting the detection SNR
for group Y. The merged-measurement likelihood function is
obtained by summing the group likelihoods (7) over all parti-
tions of X [27]:

gk(yk |X) ∝
∑

UX∈P(X)

∑
ϑ∈Ξk(L(UX))

∏
Y∈UX

ψ(ϑ(L(Y)))
D(yk) (Y).

The multi-object filter (1)-(2) with merged-measurement
likelihood is Bayes optimal in the sense that the filtering den-
sity contains all information on the current multi-object state in
the presence of false positives, false negatives and occlusions.
Unfortunately, this filter is numerically intractable due to the
sum over all partitions of the multi-object state in the merged-
measurement likelihood. At present, there is no polynomial
time technique for truncating sums over partitions. Moreover,
given a partition, computations involving the joint detection
probability PD,k(Y), joint likelihood gD,k(z|Y) and associated
joint densities are intractable except for scenarios with a few
objects.

A GLMB approximation that reduces the number of parti-
tions using the cluster structure of the predicted multi-object
state and the sensor’s resolution capabilities was proposed in
[27]. Also, computation of joint densities are approximated by
products of independent densities that minimise the Kullback-
Leibler divergence [12]. Case studies on MOT with bearings
only measurements shows very good tracking performance.
Nonetheless, at present, this filter is still computationally de-
manding and therefore not suitable for online MOT with image
data.

3. GLMB filter for tracking with image data

The GLMB filter (with the standard measurement likelihood)
is a suitable candidate for online MOT [26, 28]. However, it
is neither designed to handle occlusion nor image data. Even
though occluded objects share the observations of the occlud-
ing objects, this situation is not permitted in the standard multi-
object likelihood. Consequently, uncertainties in the states
of occluded objects grow, while their existence probabilities
quickly diminish to zero, leading to possible hi-jacking, and
premature track termination in longer occlusions.

This section proposes an efficient GLMB filter that exploits
information from image data and addresses false positives, false
negatives and occlusions. Subsection 3.1 extends the standard
observation model to allow occluded objects to share observa-
tions at the image level while Subsection 3.2 incorporates, into
the death model, domain knowledge that mis-detected tracks
with long durations are unlikely to disappear. The GLMB fil-
ter for image data and an efficient implementation are then de-
scribed in Subsections 3.3 and 3.4.
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Figure 3: Example of shared measurement in mutual occlusion (left) and image
observation for detection loss (right)

3.1. Hybrid Multi-Object Measurement Likelihood
While the detection set Zk is an efficient compression of the

image observation yk, mis-detected (including occluded) ob-
jects will not be updated by the filter. On the other hand the un-
compressed observation yk contains relevant information about
all objects, but updating with yk is computationally expensive.
Conceptually, we can have the best of both worlds by updat-
ing detected objects with the associated detections and mis-
detected objects with the image observations localised to re-
gions where these objects are expected. More importantly, this
strategy exploits the fact that occluded objects share measure-
ments with the objects occluding them.

To illustrate this we display the detection represented as a
bounding box and image observation as a heatmap of some
measure of confidence on the locations of the objects in Figure
3. The left of Figure 3 illustrates two types of false negatives
due to 1) occlusion, and 2) detection loss. In this paper mutual
occlusion is handled by shared measurements and detection loss
is resolved by considering image observations as described in
the right of Figure 3.

A hybrid tractable multi-object likelihood function that ac-
commodates both detection and image observations can be ob-
tained as follows. For tractability, it is assumed that each object
generates observation independently from each other (similar
to the standard observation model).

Given an object with state (x, `) the likelihood of observing
the local image T (yk) (some transformation of the image yk)
is gT,k(T (yk)|x, `). On the other hand, given that there are no
objects, the likelihood of observing T (yk) is gT,k(T (yk)|∅). The
ratio

σT,k(T (yk)|x, `) ,
gT,k(T (yk)|x, `)
gT,k(T (yk)|∅)

(8)

can be interpreted as the image SNR (c.f. detection SNR Eq.
(4)). For a given association map θ in the likelihood function
Eq. (5), an object with state (x, `) is mis-detected if θ(`) = 0, in
which case the value of ψ(θ(`))

Zk
(x, `) is 1 − PD,k(x, `), the proba-

bility of a miss. Consequently, after the Bayes update, track `
has no dependence on the observation yk. In order for track ` to
be updated with the local image T (yk), the value of ψ(θ(`))

D(yk)(x, `)
should be scaled by the image SNR σT,k(T (yk)|x, `). Note that
the value of ψ(θ(`))

D(yk)(x, `) should remain unchanged for θ(`) > 0.
Formally, this can be achieved by defining an extension of Eq.
(6) as follows

ϕ
( j)
yk (x, `) , ψ

( j)
D(yk)(x, `)

[
σT,k(T (yk)|x, `)

]δ0[ j] . (9)

Figure 4: An example of a scene mask for the probability of survival. The
border of scene has low probability of survival, but this probability increases as
one moves further into the scene.

In other words, for j = 0, ϕ( j)
yk (x, `) is equal to the image SNR

Eq. (8) scaled by the probability that its not detected, otherwise
it is equal to the detection SNR Eq. (4) scaled by the detection
probability.

Given a state (x, `), ϕ(θ(`))
yk (x, `) plays the same role as

ψ(θ(`))
Zk

(x, `), but accommodates both detection measurements
and image measurements. Moreover, since each object gen-
erates observation independently from each other, the hybrid
multi-object likelihood function has the same form as Eq. (5),
but with ψ(θ(`))

D(yk)(x, `) replaced by ϕ(θ(`))
yk (x, `), i.e.

gk(yk |Xk) ∝
∑

θ∈Θk(L(Xk))

∏
(x,`)∈Xk

ϕ(θ(`))
yk

(x, `). (10)

In visual occlusions, the hybrid likelihood allows occluded
objects to share the image observations of the objects that oc-
clude them. Moreover, when integrated into the Bayes recur-
sion Eq. (1)-(2), consideration for a track-length-dependent sur-
vival probability in combination with information from the im-
age observation, reduces uncertainties in the states of occluded
objects and maintains their existence probabilities to keep the
tracks alive. Hence, hi-jacking and premature track termination
in longer occlusions will be avoided.

Remark: The hybrid multi-object likelihood function Eq.
(10) is a generalization of both the standard multi-object likeli-
hood and the separable likelihood in [10]. When PD,k(x, `) = 1
for each (x, `) ∈ Xk, i.e. there is no false negative, the hybrid
likelihood Eq. (10) is the same as the standard likelihood Eq.
(5). On the other hand, if PD,k(x, `) = 0 for each (x, `) ∈ Xk, i.e.
there is no detection, then the only non-zero term in the hybrid
likelihood (10) is one with θ(`) = 0 for all ` ∈ L(Xk). In this
case, the hybrid likelihood Eq. (10) reduces to the separable
likelihood in [10]. For a general detection profile PD,k, the hy-
brid likelihood Eq. (10) reduces to the standard likelihood Eq.
(5) when σT,k(T (yk)|x, `) = 1 for each (x, `) ∈ Xk.

Note that a hybrid likelihood function can be also developed
for the merged-measurement model. However, the resulting
multi-object filter still suffers from the same intractability as
the merged-measurement filter.

5
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3.2. Death model

In most video MOT applications, if an object stays in the
scene for a long time, then it is more likely to continue to do
so, provided it is not close to the designated exit regions. Such
prior empirical knowledge can be used to improve occlusion
handling, especially long occlusions that can lead to premature
track termination in on-line MOT algorithms. In general, the
GLMB filter would terminate an object that has not been de-
tected over several frames. However, if this object has been in
the scene for some time and is not in the proximity of desig-
nated exit regions, then it is highly likely to be occluded and
track termination should be delayed. The labeled RFS formula-
tion enables such prior information to be incorporated into track
termination in a principled manner, via the survival probability.

The labeled RFS formulation accommodates survival proba-
bilities that depend on track lengths since a labeled state con-
tains the time of birth in its label, and the track length is simply
the difference between the current time and the time of birth. In
practice, it is unlikely for an object to disappear in the middle
of the visual scene (even if detection loss or occluded) whereas
it is more likely to disappear near designated exit regions due
to the scene structure (e.g. the borders of the scene). Hence, we
require the survival probability to be large (close to one) in the
middle of the scene and small (close to zero) on the edges or
designated death regions. The scene structure is reflected into
the state dependent survival probability by introducing a scene
mask that shapes the survival probability over the surveillance
region. Furthermore, since objects staying in the scene for a
long time are more certain to continue existing, we require the
survival probability to increase to one as its track length in-
creases.

An explicit form of the survival probability that satisfies these
requirements is given by

PS ,k(x, `) =
b(x)

1 + exp(−γ(k − `[1, 0]T))
(11)

where b(x) is a scene mask that represents the scene structure,
e.g., entrance or exit as illustrated in Figure 4, γ is a control pa-
rameter of the sigmoid function that reflects the expected length
of the object trajectory. The scene mask b(x) can be learned
from a set of training data or designed from the known scene
structure.

3.3. GLMB Recursion

A GLMB density can be written in the following form

π(X) = ∆(X)
∑
ξ∈Ξ

∑
I⊆L

ω(I,ξ)δI[L(X)]
[
p(ξ)

]X
, (12)

where each ξ ∈ Ξ represents a history of association maps
ξ = (θ1:k), each p(ξ)(·, `) is a probability density on X, and each
ω(I,ξ) is non-negative with

∑
ξ∈Ξ

∑
I⊆L ω

(I,ξ) = 1. The cardinality
distribution of a GLMB is given by

Pr(|X| = n) =
∑
ξ∈Ξ

∑
I⊆L

δn [|I|]ω(I,ξ), (13)

while, the existence probability and probability density of track
` ∈ L are respectively

r(`) =
∑
ξ∈Ξ

∑
I⊆L

1I(`)ω(I,ξ), (14)

p(x, `) =
1

r(`)

∑
ξ∈Ξ

∑
I⊆L

1I(`)ω(I,ξ) p(ξ)(x, `). (15)

Given the GLMB density Eq. (12), an intuitive multi-object
estimator is the multi-Bernoulli estimator, which first deter-
mines the set of labels L ⊆ L with existence probabilities above
a prescribed threshold, and second the MAP/mean estimates
from the densities p(·, `), ` ∈ L, for the states of the objects.
A popular estimator is a suboptimal version of the Marginal
Multi-object Estimator [18], which first determines the pair
(L, ξ) with the highest weight ω(L,ξ) such that |L| coincides with
the MAP cardinality estimate, and second the MAP/mean esti-
mates from p(ξ)(·, `), ` ∈ L, for the states of the objects.

The GLMB family enjoys a number of nice analytical proper-
ties. The void probability functional–a necessary and sufficient
statistic–of a GLMB, the Cauchy-Schwarz divergence between
two GLMBs, the L1-distance between a GLMB and its trunca-
tion, can all be computed in closed form [26]. The GLMB is
flexible enough to approximate any labeled RFS density with
matching intensity function and cardinality distribution [12].
More importantly, the GLMB family is closed under the predic-
tion equation (Eq. 1) and conjugate with respect to the standard
observation likelihood [8].

In the following we show that the GLMB family is conju-
gate with respect to the hybrid observation likelihood function.
Hence, starting from an initial GLMB prior, all multi-object
predicted and updated densities propagated by the Bayes recur-
sion Eq. (1)-(2) are GLMBs. For notational compactness, we
drop the subscript k for the current time, the next time is indi-
cated by the subscript ‘+’.

Proposition 1. Suppose that the multi-object prediction density
to time k + 1 is a GLMB of the form

π̄+(X+) = ∆(X+)
∑
ξ,I+

ω̄
(ξ,I+)
+ δI+

[L(X+)]
[
p̄(ξ)

+

]X+

, (16)

where ξ ∈ Ξ, I+ ∈ F (L+). Then under the hybrid observation
likelihood function Eq. (10), the filtering density at time k + 1
is a GLMB of the form

πy+
(X+) ∝ ∆(X+)

∑
ξ,I+,θ+

ω
(ξ,I+,θ+)
y+

δI+
[L(X+)]

[
p(ξ,θ+)

+

]X+

, (17)

where θ+ ∈ Θ+, and

ω
(ξ,I+,θ+)
y+

= ω̄
(ξ,I+)
+ 1Θ+(I+)(θ+)

[
ϕ̄

(ξ,θ+)
y+

]I+

, (18)

ϕ̄
(ξ,θ+)
y+

(`+) =
〈
p̄(ξ)

+ (·, `+), ϕ(θ+(`+))
y+

(·, `+)
〉
, (19)

p(ξ,θ+)
+

(x+, `+) =
p̄(ξ)

+ (x+, `+)ϕ(θ+(`+))
y+

(x+, `+)

ϕ̄
(ξ,θ+)
y+

(`+)
. (20)
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Proof. Note that the likelihood function Eq. (10) at time k + 1
can be written as

g+(y+|X+) ∝
∑
θ+

1Θ+(L(X+))(θ+)
[
ϕ̃(θ+)

y+

]X+

,

where ϕ̃(θ+)
y+

(x, `) , ϕ(θ+(`))
y+

(x, `).
Using Bayes rule

πy+
(X+) = π̄+(X+)g+(y+|X+)

∝ ∆(X+)
∑
ξ,I+

ω̄
(ξ,I+)
+ δI+

[L(X+)]
[
p̄(ξ)

+

]X+

×
∑
θ+

1Θ+(L(X+))(θ+)
[
ϕ̃(θ+)

y+

]X+

= ∆(X+)
∑
ξ,I+,θ+

ω̄
(ξ,I+)
+ 1Θ+(I+)(θ+)

×δI+
[L(X+)]

[
p̄(ξ)

+ ϕ̃(θ+)
y+

]X+

= ∆(X+)
∑
ξ,I+,θ+

ω̄
(ξ,I+)
+ 1Θ+(I+)(θ+)

×δI+
[L(X+)]

[
ϕ̄

(ξ,θ+)
y+

]L(X+)
 p̄(ξ)

+ ϕ̃(θ+)
y+

ϕ̄
(ξ,θ+)
y+

X+

= ∆(X+)
∑
ξ,I+,θ+

ω̄
(ξ,I+)
+ 1Θ+(I+)(θ+)

[
ϕ̄

(ξ,θ+)
y+

]I+

×δI+
[L(X+)]

[
p(ξ,θ+)

+

]X+

.

In this work we adopt the joint prediction and update strategy
[28] for the proposed video MOT GLMB filter. Using the same
line of arguments as in [28], yields the following recursion

Proposition 2. Given the GLMB filtering density (12) at time
k, the filtering density at time k + 1 is:

π+(X)∝ ∆(X)
∑

I,ξ,I+,θ+

ω(I,ξ)ω
(I,ξ,I+,θ+)
y+

δI+
[L(X)]

[
p(ξ,θ+)

y+

]X
, (21)

where I ∈ F (L), ξ ∈ Ξ, I+ ∈ F (L+), θ+ ∈ Θ+(I+), and

ω
(I,ξ,I+,θ+)
y+

=
[
1 − P̄(ξ)

S

]I−I+[
P̄(ξ)

S

]I∩I+

×
[
1 − rB,+

]B+−I+ rB+∩I+

B,+

[
ϕ̄

(ξ,θ+)
y+

]I+

, (22)

P̄(ξ)
S (`) =

〈
p(ξ)(·, `), PS (·, `)

〉
, (23)

ϕ̄
(ξ,θ+)
y+

(`+) =
〈
p̄(ξ)

+ (·, `+), ϕ(θ+(`+))
y+

(·, `+)
〉
, (24)

p̄(ξ)
+ (x+, `+) = 1L(`+)

〈
PS (·, `+) f+(x+|·, `+), p(ξ)(·, `+)

〉
P̄(ξ)

S (`+)
+ 1B+

(`+)pB,+(x+, `+), (25)

p(ξ,θ+)
+ (x+, `+) =

p̄(ξ)
+ (x+, `+)ϕ(θ+(`+))

y+
(x+, `+)

ϕ̄
(ξ,θ+)
y+

(`+)
. (26)

The summation in Eq. (21) can be interpreted as an enumera-
tion of all possible combinations of births, deaths and survivals

together with associations of new measurements to hypothe-
sized tracks. Observe that Eq. (21) does indeed take on the
same form as Eq. (12) when rewritten as a sum over I+, ξ, θ+

with weights

ω
(I+,ξ,θ+)
+ ∝

∑
I

ω(I,ξ)ω
(I,ξ,I+,θ+)
y+

. (27)

Hence at the next iteration we only propagate forward the com-
ponents (I+, ξ, θ+) with weights ω(I+,ξ,θ+)

+ .
Remark: It is also possible to approximate the resulting

GLMB filtering density by an LMB with matching 1st moment
and cardinality distribution [29]. This so-called LMB filtering
strategy reduces considerable computations since an LMB is a
GLMB with one term. However, tracking performance tend to
degrade, especially in scenarios with many closely space ob-
jects. Note that for high SNR scenarios the detection proba-
bility is high, hence the recursion Eq. (21)-(27) would process
detections mostly. On the other hand when the detection prob-
ability is low it would process the image mostly. In practice the
SNR varies between different regions in the observation space
as well as with time, the recursion Eq. (21)-(27) adaptively pro-
cesses detections and image data to improve performance while
reducing the computational cost.

3.4. GLMB Filter Implementation

The number of terms in the GLMB filtering density grows
super-exponentially, and it is necessary to truncate these terms
without exhaustive enumeration. A two-stage implementation
of the GLMB filter truncates the prediction and filtering densi-
ties using the K-shortest path and the ranked assignment algo-
rithms, respectively [26]. In [28] the joint prediction and up-
date was designed to improve the truncation efficiency of the
two-staged implementation. Further, the GLMB truncation can
be performed via Gibbs sampling with linear complexity in the
number of detections (the reader is referred to [28] for deriva-
tions and analysis). Fortuitously, this implementation can be
readily adapted for the video MOT GLMB filter Eq. (21)-(27).

The GLMB filtering density Eq. (12) at time k is completely
characterized by the parameters (ω(I,ξ), p(ξ)), (I, ξ) ∈ F(L)×Ξ,
which can be enumerated as {(I(h), ξ(h), ω(h), p(h))}Hh=1, where

ω(h) , ω(I(h),ξ(h)), p(h) , p(ξ(h)).

Since Eq. (12) can now be rewritten as

π(X) = ∆(X)
H∑

h=1

ω(h)δI(h) [L(X)]
[
p(h)

]X
,

implementing the GLMB filter amounts to propagating the
component set {(I(h), ω(h), p(h))}Hh=1 (there is no need to store ξ(h))
forward in time using Eq. (21)-(27). The procedure for comput-
ing the component set {(I(h+)

+ , ω(h+)
+ , p(h+)

+ )}H+

h+=1 at the next time is
summarized in Algorithm 1. Note that to be consistent with the
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indexing by h instead of (I, ξ), we also abbreviate

P̄(h)
S (`i) , P̄(ξ(h))

S (`i), p̄(h)
+ (x, `i) , p̄(ξ(h))

+ (x, `i),

ϕ̄
(h, j)
y+

(`i) ,
〈
p̄(h)

+ (·, `i), ϕ
( j)
y+

(·, `i)
〉
,

η(h)
i ( j) ,


1 − P̄(h)

S (`i), `i ∈ I(h), j< 0,
P̄(h)

S (`i)ϕ̄
(h, j)
y+

(`i), `i ∈ I(h), j≥ 0,
1 − rB,+(`i), `i ∈ B+, j< 0,
rB,+(`i)ϕ̄

(h, j)
y+

(`i), `i ∈ B+, j≥ 0.

(28)

Algorithm 1. Joint Prediction and Update

• input: {(I(h), ω(h), p(h))}Hh=1, y+, Z+, Hmax
+ ,

• input: {(r(`)
B,+, p(`)

B,+)}`∈B+
, PS, f+, σD,+, σT,+,

• output: {(I(h+)
+ , ω(h+)

+ , p(h+)
+ )}H+

h+=1

sample counts [T (h)
+ ]H

h=1 from multinomial distribution
with parameters Hmax

+ trials and weights [ω(h)]H
h=1

for h = 1 : H
compute η(h) := [η(h)

i ( j)](|I(h)∪B+ |,|Z+ |)
(i, j)=(1,−1) using Eq. (28)

initialize γ(h,1)

{γ(h,t)}
T̃ (h)

+
t=1 := Unique(Gibbs(γ(h,1),T (h)

+ , η(h)));
for t = 1 : T̃ (h)

+

compute I(h,t)
+ from I(h) and γ(h,t) using Eq. (29)

compute ω(h,t)
+ from ω(h) and γ(h,t) using Eq. (30)

compute p(h,t)
+ from p(h) and γ(h,t) using Eq. (31)

end
end
({(I(h+)

+ , p(h+)
+ )}H+

h+=1,∼, [Uh,t])

:= Unique({(I(h,t)
+ , p(h,t)

+ )}(H,T̃
(h)
+ )

(h,t)=(1,1));
for h+ = 1 : H+

ω(h+)
+ :=

∑
h,t:Uh,t=h+

ω(h,t)
+ ;

end
normalize weights {ω(h+)

+ }
H+

h+=1

Algorithm 1a. Gibbs

• input: γ(1),T, η = [ηi( j)]

• output: γ(1), ..., γ(T )

P := size(η, 1); M := size(η, 2) − 2; c := [−1 : M];
for t = 2 : T
γ(t) := [ ];
for n = 1 : P

for j = 1 : M
ηn( j) := ηn( j)(1 − 1

{γ(t)
1:n−1,γ

(t−1)
n+1:P}

( j));
end
γ(t)

n ∼ Categorical(c, ηn); γ(t) := [γ(t), γ(t)
n ];

end
end

There are three main steps in one iteration of the GLMB fil-
ter.

Step 1. First, the Gibbs sampler (Algorithm 1a) is used to gen-
erate the auxiliary vectors γ(h,t), h = 1:H, t = 1:T̃ (h)

+ , with the
most significant weights ω(h,t)

+ (note that γ(h,t) is an equivalent
representation of the hypothesis (I(h,t)

+ , θ(h,t)
+ ), with components

γ(h,t)
i , i = 1:|I(h)∪B+|, defined as θ(h,t)

+ (`i) when `i ∈ I(h), and −1
otherwise [28]). The Gibbs sampler has an exponential conver-
gence rate [28]. More importantly, it is not necessary to discard
burn-ins and wait for samples from the stationary distribution.
All distinct samples can be used, the larger the weights, the
smaller the L1 error from the true GLMB filtering density [28].
Step 2. Second, the auxiliary vectors are used to generate an
intermediate set of parameters with the most significant weights
(I(h), I(h,t)

+ , ω(h,t)
+ , p(h,t)

+ ), h = 1:H, t = 1:T̃ (h)
+ , via Eq. (21). Note

that given a component h and γ(h,t), it can be shown that [28]

I(h,t)
+ = {`i ∈ I(h) ∪ B+ : γ(h,t)

i ≥ 0}, (29)

ω(h,t)
+ ∝ ω(h)

|I(h)∪B+ |∏
i=1

η(h)
i (γ(h,t)

i ), (30)

p(h,t)
+ (·, `i) =

p̄(h)
+ (·, `i)ϕ

(γ(h,t)
i )

y+
(·, `i)

ϕ̄
(h,γ(h,t)

i )
y+

(`i)
. (31)

Note also that θ(h,t)
+ (`i) = γ(h,t)

i when γ(h,t)
i ≥ 0, for `i ∈ I(h,t)

+ .
Step 3. Third, the intermediate parameters are marginalized via
Eq. (27) to give the new parameter set {(I(h+)

+ , ω(h+)
+ , p(h+)

+ )}H+

h+=1.
Note that Uh,t gives the index of the GLMB component at time
k + 1 that (I(h), I(h,t)

+ , p(h,t)
+ ) contributes to.

4. Experimental results

The proposed MOT filter is tested on a simulated TBD ap-
plication in subsection 4.1, and on real video data in subsection
4.2.

4.1. TBD

4.1.1. Dynamic motion and observation model
Consider a scenario with upto 5 objects, each with a 4D state

xk = [ px,k, ṗx,k, py,k, ṗy,k ]T of position and velocity. Each ob-
ject follows a constant velocity model with Gaussian transition
density

fk|k−1(xk |xk−1) = N(xk; Fxk−1,Q),

where

F = I2 ⊗

1 Ts

0 1

 ,
I2 is the 2 × 2 identity matrix, ⊗ denotes the Kronecker product,
Ts is the sampling period of the video data, Q = σ2

v I2, and
σv = 1 pixels/frame is the noise standard deviation.

The birth density is assumed to be LMB with 5 components
of 0.03 birth probability and Gausssian distributed birth densi-
ties as

N(·, [5; 0; 5; 0]T , Pγ), N(·, [5; 0; 25; 0]T , Pγ),
N(·, [5; 0; 90; 0]T , Pγ), N(·, [90; 0; 30; 0]T , Pγ),
N(·, [80; 0; 90; 0]T , Pγ), Pγ = diag([3; 2; 3; 2]).
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The survival probability PS for the standard GLMB filter is 0.98
and the control parameter γ of the age-dependent survival prob-
ability is set to 0.1. The scene mask b(x) of the same shape as
Figure 4 with a margin of 10 pixels around the border area is
used.

The observations are raw images simulated from the radar
TBD measurement model [11], consisting of an array of
pixel values representing the power signal returns i.e., yk =

[y(1), ..., y(i)], with

y(i) =

∣∣∣∣∣∣∣∣
∑

x∈X:i∈C(x)

A(x)h(i)
A (x) + w(i)

∣∣∣∣∣∣∣∣
2

, (32)

where C(x) is usually referred to as the target template, A(x)
denotes the amplitude of the return signal. Setting a relatively
high SNR for the simulation means that the filter will mostly
operate like a standard GLMB filter, while a low SNR means it
mostly operates like a TBD-GLMB filter. Neither scenarios are
interesting. In this example we simulate the observations with
SNRs that fluctuate between 10dB and 7dB within the same
image. Further, to demonstrate how the tracker adapts to the
SNR mismatch, the observation model used by the tracker is
instantiated with a 10dB SNR. The point spread function in cell
i from state x is given by

h(i)
A (x) = exp

(
−

(ri − r(x))2

2R
−

(si − s(x))2

2S

)
, (33)

where R = 1 and S = 1 are constants related to the image
cell resolution; r(x) and s(x) are the coordinates of the object
in the measurement space; ri and si are the cell centroids. The
detection and transformed image observation for the raw pixel
image model Eq. (32)-(33) are obtained as follows.

A hard thresholding is applied to the raw image yk, and the
detection model used by the proposed filter consists of a single-
object detection likelihood gD,k(z|x, `) = N(z; Hx,Σ), where
H = [1 0 0 0; 0 0 1 0]; Σ = diag(42, 42), a detection prob-
ability PD of 0.98, and a clutter rate of 10 points per frame.
On the other hand, the transformed image T (yk) is the correla-
tion response between the reference template and the observed
template, obtained from the raw image yk via Kernelized Corre-
lation Filtering (KCF) [30]. The image observation model use
by the proposed filter is given by

gT,k(T (yk)|x, `) ∝ exp
(
−

1
σ2

(∥∥∥f(x) − f̄`
∥∥∥2

))
,

where f(x) is the observed template at a given object state x; f̄`
is the reference template of the track label ` (consists of pixel
intensities in a 3 pixel by 3 pixel region); σ controls the shape
of the function. The information flow for the proposed hybrid
observation likelihood with KCF is illustrated in Figure 5. The
Unscented Transform is used for the measurement update for
image observations. To adapt appearance changes, pixels in-
side regions with confident point detections are used to update
f̄`. The reference template is not updated when no detection
is assigned. In the case of mutual occlusion, the reference tem-
plate is also not updated, however, a detection from the occluder

Figure 5: A flow diagram for hybrid likelihood function

Figure 6: True tracks in the x y plane. Start/Stop positions are shown with ◦/4.

(other target) is used as a shared measurement (see Section 3.1)
for the occluded track update until occlusion ends. The track is
indicated as occluded when there exists a detection with differ-
ent appearance (i.e., different reference template) whose over-
lapped target extent is over the pre-defined threshold (0.4 in our
experiments). Empirically, this strategy is more robust than the
update scheme in [30] because accumulated learning errors are
reduced by updating the model with confident detections. Note
that further improvements in observation modelling and tem-
plate update can be adopted such as [31], however, it requires
non-negligible computations.

4.1.2. Simulation scenario and comparison results
The size of the surveillance area is 100 pixels by 100 pix-

els and the size of the image cell is 1. Image data for the true
tracks (shown in Figure 6) is generated according the obser-
vation model Eq. (32)-(33). Sample snap shots of image se-
quence are displayed in Figure 7 together with the true num-
ber of objects and the description of detection results (by hard-
thresholding) for each snapshot. Figure 7 illustrates that low
SNR images are prone to false negatives, and that merged de-
tections occur in mutual occlusions.

We compare the standard GLMB filter (GLMB) with the pro-
posed GLMB for image observation (GLMB-IM) (with time-
dependent survival probability). The performance comparison
is summarized in Figure 8 with respect to OSPA errors [32] cal-
culated over 100 Monte Carlo runs.

Note from Figure 8, that the standard GLMB filter quickly
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Figure 7: 4 snaps shots from the image data sequence superimposed with de-
tections (red circles), which show no detection loss, detection loss and merged
detections.

lost tracks due to the false negatives from low SNR or merged
detections from object occlusions. On the other hand, the
GLMB-IM filter keeps the tracks due to the combination of pro-
posed survival probability and effective measurement updates
from the image data.

4.2. Visual Tracking

4.2.1. Dataset and parameter settings
In this subsection, we test the proposed MOT filter on the

PETS 2009 dataset [33]; the MOTChallenge dataset [34]. To
benchmark the tracking performance against a number of recent
algorithms, we use published detection results and evaluation
tools from [34]. The motion model is learned from the training
dataset by considering the maximum speed of the object with
regard to the frame rate.

Remark: While the object’s extent such as its bounding box
[1], [5], can be included in the object state, effective modeling
of extent dynamics is application dependent. In experiments
we estimate an object’s extent via the median values of the x, y
scale of the detections associated with existing tracks in a given
time window.

Remark: Similar to single-object visual tracking filtering in
[1], the predicted covariance for each track is capped to a pre-
scribed value to prevent it from exploding over time.

The RFS framework accommodates a time-varying birth
model. In this experiment, we use a birth model that consists
of both static and dynamic components. The static component
is an LMB that describes expected locations where objects are
highly likely to appear e.g., the image border/footpaths near the
image border. The dynamic component is a time-varying LMB
that exploits measurements with weak associations (to existing
tracks) to describe highly likely object births at the next time
frame [29].

The detection z ∈ D(yk) of an object is obtained by a detec-
tor based on discriminative part-baed model (DPM) [35] and

Figure 8: OSPA Error for two filters: GLMB vs GLMB-IM (proposed) (first
row: overall OSPA distance, Second row: localization error, third row: cardi-
nality error)

the same point measurement model in the numerical exam-
ple is used with Σ = diag(52, 52). The probability of detec-
tion PD is 0.98 and the clutter rate is 5, i.e., an average of
5 clutter measurements per frame. These parameters can be
obtained from training data or learned on-the-fly in the RFS
framework as proposed in [36]. For image observations, simi-
lar to the TBD example in Section 4.1.1,we also applied KCF
but to the Histogram of Oriented Gradients (HOG) feature im-
age instead of the raw pixel image [30]. The template update
strategy described in Section 4.1.1 is used. More advanced tem-
plate learning and update algorithm can be adapted to handle
re-identification of people [37], however, it is the beyond scope
of this paper.

In the experiments, the maximum number of track hypothe-
ses Hmax

+ is set to 200 for a good balance between the accuracy
and computational efficiency, and track estimates are obtained
from the GLMB filtering density via the LMB estimator de-
scribed in Subsection 3.3. Note that when the LMB estimator
terminates a track, the GLMB filtering density still contains its
existence probability and state density (hence state estimate).
This information is completely deleted only when its existence
probability is so negligible that all relevant GLMB components
are truncated. If not completely deleted, it is possible that due
to new evidence in the data at later time, a track’s existence
probability becomes significant enough to be selected by multi-
object estimator, leading to track fragmentation. While this
problem can be addressed in a principled manner via multi-
object smoothing, the GM-PHD smoother [38] is not appli-
cable and an implementation of the forward-backward GLMB
smoother [39] is not yet available. Nonetheless, we can exploit
the sequence of measurements associated with each track in the
GLMB framework, to smooth the estimated tracks and recover
missing state estimates.
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Table 1: Tracking performance on the PETS 2009 dataset (Online methods are indicated by ∗)
Sequence Tracker MOTA ↑ MOTP ↑ MT ↑ ML ↓ FM ↓ IDS ↓

GLMB-IM (Ours) ∗ 91.0 % 77.2 % 18 0 20 15
GLMB [8] ∗ 83.9 % 76.1 % 16 0 70 50

S2L1 MHT AM [40] 92.6% 79.1% 18 0 12 13
MHT [41] 84.1% 77.5% 17 0 65 45
CEM [5] 90.3 % 74.3 % 18 0 15 22
GLMB-IM (Ours) ∗ 55.4 % 57.8 % 10 2 163 133
GLMB [8] ∗ 33.4 % 56.3 % 4 6 275 162

S2L2 MHT AM [40] 59.2% 61.4% 10 2 162 120
MHT [41] 38.0 % 58.8 % 3 8 273 154
CEM [5] 58.1 % 59.8 % 11 1 153 167
GLMB-IM (Ours) ∗ 37.5 % 69.4 % 12 19 22 30
GLMB [8] ∗ 35.5 % 65.6 % 8 19 23 32

S2L3 MHT AM [40] 38.5 % 70.8% 9 22 9 8
MHT [41] 40.8 % 67.3 % 10 21 19 18
CEM [5] 39.8 % 65.0 % 8 19 22 27
GLMB-IM (Ours) ∗ 61.2 % 69.0 % 21 15 21 13
GLMB [8] ∗ 55.1 % 63.0 % 19 14 60 20

S1L1-2 MHT AM [40] 62.1% 70.3% 21 9 14 11
MHT [41] 61.6 % 68.0 % 22 12 23 31
CEM [5] 52.0 % 66.5 % 17 14 52 41
GLMB-IM (Ours) ∗ 25.4 % 59.5 % 3 25 34 26
GLMB [8] ∗ 23.8 % 56.0 % 3 25 35 26

S1L2-1 MHT AM [40] 25.4 % 62.2% 3 24 30 25
MHT [41] 24.0 % 58.4 % 5 23 29 33
CEM [5] 29.6% 58.8 % 2 21 34 42

4.2.2. PETS 2009 dataset

Table 1 summarizes the GLMB-IM filter tracking perfor-
mance against state-of-the-art baseline batch-based tracking
algorithms [41], [40], [5] with the PETS 2009 dataset [33]
which includes high crowd density scenarios. We use well-
known MOT performance indices for PETS 2009 dataset such
as MOT accuracy (MOTA), MOT Precision (MOTP), the num-
ber of fragmentations (FM) and the number of identity switches
(IDS). Table 1 shows the ratio of tracks with successfully
tracked parts for more than 80% (mostly tracked (MT)), less
than 20% (mostly lost (ML)), or less than 80% and more than
20% (partially tracked (PT)). The up (down) arrows in Table
1 mean that higher (lower) the values indicate better perfor-
mance. The best scores for individual attributes are marked
as bold-faced. In the comparison results, we refer our algo-
rithm as GLMB filter with image measurement (GLMB-IM).
We include the GLMB filter [8] as the baseline to illustrate per-
formance gain. As can be seen from the evaluation metrics,
the performance of the GLMB-IM is similar to that of offline-
based methods. A possible explanation for observing more ID
switches and fragments is the re-initialization of tracks follow-
ing a long-term full occlusion due to the measurement driven
birth model.

4.2.3. MOT Challenge
In this section we test the GLMB-IM filter on the widely

adopted MOTChallenge benchmark dataset [34] for more com-
prehensive comparisons. In this experiment, we also report
false positives per frame (FPF), the number of false positives
(FP), the number of false negatives (FN), and tracking speed in
Hertz (Hz).

As can be seen from Table 2, the GLMB-IM filter achieves
the best or second best performance in important indicators
such as FPF, Recall and MT, amongst the online methods.
For Frag and IDS, the GLMB-IM filter is consistently in the
top three performers. More fragmentation is observed due to
re-initialization of objects from the measurement-driven birth
model when they emerge from very long full occlusions. Due
to the generality of the framework, more sophisticated motion
models and other types of detections and appearance features
can be incorporated for further improvements. Selected frames
from the tracking results for object occlusions are shown in Fig-
ure 9 where upper-left markers indicate object detections. Note
from the tracking results without detections that the GLMB-
IM tracker does not lose tracks due to false negatives or mu-
tual occlusions. More surprisingly, it has comparable accuracy
with batch methods, keeping in mind that it runs in near real-
time with basic MATLAB implementation (see tracking speed
in Hz).

The tracking experiments with the proposed GLMB-IM fil-
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Table 2: Tracking performance on the 2D MOT dataset (Online methods are indicated by ∗)
Tracker MOTA ↑ MOTP ↑ FAF ↓ MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓ FM ↓ Hz ↑
GLMB-IM (Ours) ∗ 29.5 71.0 1.9 13.2% 40.1% 10,566 32, 020 670 1,260 20
TC ODAL [42]∗ 15.1 70.5 2.2 3.2% 55.8% 12,970 38,538 637 1,716 1.7
MDP REL [43]∗ 30.3 71.3 1.7 13.0% 38.4% 9,717 32,422 680 1,500 1.1
RMOT [44]∗ 18.6 69.6 2.2 5.3% 53.3% 12,473 36,835 684 1,282 7.9
DP NMS [45] 14.5 70.8 2.3 6% 40.8% 13,171 34,814 4,537 3.090 444.8
TBD [46] 15.9 70.9 2.6 6.4% 47.9% 14,943 34,777 1,939 1,963 0.7
SMOT [47] 18.2 71.2 1.5 2.8% 54.8% 8,780 40,310 1,148 2,132 2.7
CEM [5] 19.3 70.7 2.5 8.5% 46.5% 14,180 34,591 813 1,023 1.1
SegTrack [48] 22.5 71.7 1.4 5.8% 63.9% 7, 890 39,020 697 737 0.2
MoiCon [49] 23.1 70.9 1.8 4.7% 52.0% 10,404 35,844 1,018 1,061 1.4
MHT AM [40] 32.4 71.8 1.6 16.0% 43.8% 9,064 32,060 435 826 0.7

ter are implemented in MATLAB using single core (Intel i7
2.4GHz 5500) CPU laptop. A comparison of tracking speed
with other trackers (excluding the point detection process) is
summarized in Table 2, which shows an average of 20 fps
for the GLMB-IM filter (without code optimization). Hence,
the GLMB-IM filter is very well-suited for online applications
considering further speed up can be achieved using C++ and
code optimization. Further, the salient feature of the proposed
GLMB-IM filter is its linear complexity with respect to the
number of detections [28]. It is important to note that the re-
ported computation speeds in Table 2 only serves as a rough
indication because all implementations are dependent on the
hardware platform, programming language, code structure, test
sequence scenarios, etc.

In summary the GLMB-IM filter offers practical trade-offs
between accuracy and speed for real-time applications. Fur-
ther, as briefly mentioned before, the GLMB-IM filters can be
extended to offline methods such as batch estimation or via
smoothing techniques. The RFS approach also provides the
probability distribution of the current number of objects, i.e.,
cardinality distribution Eq. (13) (which is not available in other
tracking approaches). Figure 10 shows the frame by frame car-
dinality distribution for the three selected sequences.

5. Conclusion

This paper proposed an efficient online visual MOT algo-
rithm that exploits the advantages of both detection-based and
TBD approaches, which seamlessly integrates state estimation,
track management, clutter rejection, false negatives and occlu-
sion handling into one single Bayesian recursion. In particular,
it has the efficiency of the detection-based approach that avoids
updating with the entire image, while at the same time mak-
ing use of information at the image level by using only small
regions of the image where mis-detected objects are expected.
The proposed algorithm has a linear complexity in the num-
ber of detections and quadratic in the number of hypothesized
tracks, making it suitable for real-time computation. Experi-
mental results on well-known datasets show that the proposed

algorithm is ranked first or second amongst state-of-the-arts on-
line methods, in terms of: the percentage of correctly tracked
objects, percentage of tracks with successfully tracked parts;
and the least false positive rates, and consistently in the top
three performers in other standard indicators. More surpris-
ingly, it has comparable accuracy with offline methods, keeping
in mind that it runs in near real-time with basic Matlab imple-
mentation.

While the proposed MOT filter was developed for simple
scenarios where tracks are terminated once they exit the field
of view, the framework can accommodate more complex ap-
plications that require re-establishing identities of reappearing
objects. In this case the state vector of each object is extended
to incorporate appearance features, and their survival probabil-
ities are set to unity once they reach a certain threshold (so that
the filter will not terminate their tracks). Appearance models
for each track can be learned on-line (via deep learning or other
approaches) using the object’s appearance features and proba-
bility of existence. When an object is detected in the field of
view(s), the filter accounts for whether it is a new object or a
reappearing object by updating the weights of relevant GLMB
components/hypotheses in accordance to how well the appear-
ance features of newly detected object fit the appearance models
of the undetected objects. The major consideration in this ex-
tension is the computational cost due to the ever growing num-
ber of tracks, the increase in the dimension of the state of each
object and the appearance learning process. Further work is
needed to reduce the computational cost for real-time applica-
tions.
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Figure 9: Selected frames of the tracking results for missing detections and mutual occlusions (Tracks are displayed by bounding boxes with ID (numbers) and
detections are marked as upper-left corner markers.)
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