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Abstract

A forward-backward Probability Hypothesis Density (PHD) smoother involving forward filtering

followed by backward smoothing is proposed. The forward filtering is performed by Mahler’s PHD

recursion. The PHD backward smoothing recursion is derived using Finite Set Statistics (FISST) and

standard point process theory. Unlike the forward PHD recursion, the proposed backward PHD recursion

is exact and does not require the previous iterate to be Poisson. In addition, assuming the previous iterate

is Poisson, the cardinality distribution and all moments of the backward-smoothed multi-target density are

derived. It is also shown that PHD smoothing alone does not necessarily improve cardinality estimation.

Using an appropriate particle implementation we present a number of experiments to investigate the

ability of the proposed multi-target smoother to correct state as well as cardinality errors.

Index Terms

Filtering and Smoothing, tracking, random sets, point processes, finite set statistics, SMC-PHD.

SP-EDICS: MLR-BAYL Bayesian signal processing, SSP-FILT Filtering, SSP-TRAC Tracking

algorithms, SSP-APPL Applications of statistical signal processing techniques

Acknowledgement: This work is supported by the Australian Research Council.∗ Address: Advanced Technology Group, Lockheed Martin MS2 Tactical Systems, Eagan, Minnesota E-mail:
ronald.p.mahler@lmco.com Tel: +1 651 456 4819 Fax: +1 651 456 3098† Corresponding author. Address: School of Electrical, Electronic and Computer Engineering, The University of Western
Australia, Crawley, WA 6009, Australia. E-mail: ba-tuong.vo@uwa.edu.au Tel: +61 8 6488 1767 Fax: +61 8
6488 1065‡ Address: Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC 3010,
Australia. E-mail: bnvo@unimelb.edu.au Tel: +61 3 8344 6693 Fax: +61 3 8344 6678

bnvo
Typewritten Text
PREPRINT: IEEE TRANS. AEROSPACE & ELECTRONIC SYS., VOL. 48, NO. 1, pp. 707-728, JAN. 2012



PREPRINT: SUBMITTED TO IEEE TRANSACTION ON AEROSPACE AND ELECTRONIC SYSTEMS 1

I. INTRODUCTION

Filtering, smoothing and prediction are three important interrelated problems in stochastic estimation,

which essentially amount to calculating

pk|l(xk|z1:l) (1)

the probability density of the state xk at time k given the observation history z1:l = (z1, . . . , zl) up to

time l. Smoothing, filtering and prediction, respectively, refer to the cases l > k, l = k, and l < k. In

filtering the objective is to recursively estimate the current state given the observation history up to the

current time k. Smoothing can yield significantly better estimates than filtering by delaying the decision

time (k) and using data at a later time (l > k) [24], [13].

The text [1] provides a comprehensive coverage of closed-form smoothing solutions for linear Gaussian

models. For non-linear non-Gaussian models [17] proposed the first Sequential Monte Carlo (SMC)

implementation of the smoothing while filtering scheme or the filter-smoother by extending the standard

particle filter. In the forward-backward smoothing scheme, involving forward filtering followed by

backward smoothing, SMC implementations are proposed in [15], [7], [12]. A block-based particle

smoothing method was proposed in [11]. In [3] the two-filter smoother of [2], [16] was generalized

and efficient SMC implementations were proposed. A SMC smoother that is linear in complexity and

does not suffer from particle depletion as in [17] has recently been proposed in [10].

In a multi-target scenario the number of states and the states themselves vary in time in a

random fashion. This is compounded by false measurements, detection uncertainty and data association

uncertainty. Consequently, filtering and smoothing in the multi-target realm is extremely challenging. In

[19] a Probabilistic Data Association (PDA) multi-target smoothing algorithm was proposed to improve

tracking performance in clutter. An Interacting Multiple Model (IMM) smoothing method was proposed

in [14] to improve the tracking of maneuvering targets. In [4] a fixed lag smoothing scheme with IMM-

PDA was proposed to improve the tracking of agile targets in clutter. The use of fixed-interval smoothing

in IMM-MHT was proposed in [18] to improve the tracking of maneuvering targets. These techniques

are proposed for linear Gaussian models, but can be extended to non-linear non-Gaussian models via

techniques such as SMC, linearization, and unscented transforms.

As with the multi-target filtering problem, the challenge in multi-target smoothing is the high

dimensionality of the distributions on the multi-target state space [21], [34]. Indeed, the computational

intractability is more severe in multi-target smoothing than filtering. The PHD filter [20], [21] is a

recent multi-target filter that operates on the single-target state space and, consequently, avoids the high

dimensionality that results from multiple targets. Its efficiency and performance suggest that smoothing
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with the PHD offers a tractable solution to non-linear non-Gaussian multi-target smoothing. The first

effort to solve the multi-target smoothing problem via the PHD framework was reported in [25], where

a forward-backward smoothing scheme is employed. Mahler’s PHD filter [20] is the natural choice for

the forward filter. Based on the bin occupancy argument of [9], an approximate backward PHD smoother

under Poisson assumptions was proposed in [25]. An SMC implementation adapted from [30] and [7]

was presented and simulation results were given.

Inspired by the effort in [25], we derive, using rigorous mathematical arguments, the first correct

backward PHD smoother. Moreover, our backward PHD recursion is exact and does not require that

the smoothed PHD at the previous iteration to be Poisson. In addition, under Poisson assumptions,

all moments as well as the cardinality distribution of the backward-smoothed multi-target density are

derived. It is also shown that PHD smoothing alone does not necessarily improve cardinality estimation.

The mathematical tools used in our derivations are Mahler’s Finite Set Statistics (FISST) [20], [21] and

the celebrated Campbell’s theorem from point process theory [6], [29]. Using an SMC implementation

adapted from [30] and [7], we present a number of experiments to investigate the ability of the proposed

PHD smoother to correct for state errors and cardinality errors.

In section II, we present the necessary mathematical tools from random set theory for the development

of the main results. A rigorous derivation of the PHD backward smoothing recursion is presented in

Section III while the derivation of the smoothed cardinality distribution and moments are presented in

Section IV. Details of the sequential Monte Carlo implementation and case studies are presented in

Sections V and VI.

II. BACKGROUND

This section presents relevant background required for the derivation of the main results, including

Bayesian multi-target filtering, the PHD filter, tools from FISST and point process theory such as

probability generating functionals, Campbell’s theorem and factorial moments. Further background

material can be found in [21] from a FISST perspective or in [34] from a point process perspective.

For simplicity the following notation is adopted throughout the paper:

〈f, g〉 =
∫

f(x)g(x)dx

〈〈f( : |·), g( : )〉 , h(·)〉 =
∫ (∫

f(x|y)g(x)dx

)
h(y)dy

A. Random finite set and the Bayes multi-target filter

Suppose at time k there are M(k) targets with states xk,1, . . . , xk,M(k) each taking values in a state

space X ⊆ Rnx , and N(k) measurements zk,1, . . . , zk,N(k) each taking values in an observation space
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Z ⊆ Rnz , where Rn denotes the nth Cartesian product of R. Then, the multi-target state Xk and the

multi-target measurement Zk, at time k, are defined as

Xk = {xk,1, . . . , xk,N(k)} ∈ F(X ),

Zk = {zk,1, . . . , zk,M(k)} ∈ F(Z),

where F(X ) and F(Z) denote the spaces of all finite subsets of X and Z , respectively. In the Bayesian

estimation paradigm, the state and measurement are treated as realizations of random variables. Since the

(multi-target) state Xk and measurement Zk are finite sets, the concept of a random finite set is required.

In essence, a random finite set (RFS) X on X , is simply a finite-set-valued random variable or a

random variable taking values in F(X ). As with random vectors, the probability density of an RFS

(if it exists) is a very useful descriptor in filtering and estimation. However, standard tools for random

vectors are not appropriate for RFSs since the space F(X ) does not inherit the usual Euclidean notion

of integration and density. Mahler’s Finite Set Statistics (FISST) provides practical mathematical tools

for dealing with RFSs [20], [21], including a consistent notion of integration and density.

Using the FISST notion of integration and density, the multi-target Bayes filter that propagates the

multi-target posterior density pk|k(·|Z1:k) in time is given by [20], [21]

pk+1|k(Xk+1|Z1:k) =
∫

fk+1|k(Xk+1|X)pk|k(X|Z1:k)δX, (2)

pk+1|k+1(Xk+1|Z1:k+1) =
gk+1(Zk+1|Xk+1)pk+1|k(Xk+1|Z1:k)∫

gk+1(Zk+1|X)pk+1|k(X|Z1:k)δX
, (3)

where pk+1|k denotes the predicted multi-target density, fk+1|k is the multi-target transition density, gk+1

is the multi-target likelihood and
∫

f(X)δX =
∞∑

i=0

1
i!

∫
f({x1, ..., xi})dx1 · · · dxi.

is the set integral of a function f : F(X ) → R.

Like the standard (vector) posterior, the multi-target posterior captures all information about the multi-

target state. However, optimal Bayes estimators for random vectors, such as expected a posteriori or

maximum a posteriori, are not applicable to RFSs. Suitable Bayes optimal estimators for RFSs have been

established in [21].

The multi-target Bayes filter is generally intractable [20], [21], [34] and it is necessary to resort to

more tractable approximations. The Probability Hypothesis Density (PHD) filter [20] is a first moment

approximation to the full multi-target Bayes filter (2)-(3), which operates on the (single-target) state space

X .
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B. The PHD and Campbell’s theorem

The PHD, commonly known in point process theory as an intensity function, is a first-order statistical

moment of an RFS [6], [29], [20]. The PHD of an RFS X on X , is a non-negative function v on X
such that its integral over any region S gives the expected number of elements of X that are in S, i.e.

E

[∑

x∈X

1S(x)

]
= 〈1S , v〉 ,

where 1S is the indicator function of the set S, and E denotes the expectation operator. Note that given

a (FISST) multi-target density p, E can be expressed in terms of a set integral as follows

E [f(X)] =
∫

f(X)p(X)δX.

The local maxima of the PHD are points in X with the highest local concentration of expected number

of elements, and can be used to generate estimates for the elements of X . A simple multi-target estimator

can be obtained by, first, estimating the number of states, N̂ by rounding the PHD mass 〈1, v〉 and, second,

choosing the N̂ highest maxima of the PHD v. The Bayes optimality of this estimator has been discussed

in [23].

Campbell’s theorem relates certain types of expectation of an RFS to its PHD, and is an important

result in point process theory [29]. Campbell’s theorem (see [6], [29]) states that for an RFS X on X
with PHD (or intensity) v

E

[∑

x∈X

ζ(x)

]
= 〈ζ, v〉 . (4)

We will call on Campbell’s theorem for the derivation of our main results.

C. The PHD filter

The PHD filter recursively propagates the PHD of the multi-target state in time based on the following

assumptions:

• Each target evolves and generates measurements independently of one another

• The surviving and birth RFSs are independent of each other

• The clutter RFS is Poisson and independent of the target generated measurements

• The predicted multi-target RFS is Poisson

The PHD recursion consists of a prediction step and an update step that respectively approximate the

Bayes multi-target prediction (2) and update (3). Let

vk|k = filtered (updated) PHD at time k

vk+1|k = predicted PHD from time k to k + 1
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γ = γk+1|k = PHD of birth at time k + 1

f = fk+1|k = single target transition from time k to k + 1

pS = pS,k+1|k = probability of survival from k to k + 1

g = gk+1 = single target likelihood at time k + 1

pD = pD,k+1 = probability of detection at time k + 1

κk+1 = intensity function of clutter at time k + 1

(Note that for simplicity we have dropped the time indices from the model parameters γk+1|k, fk+1|k ,

pS,k+1|k, gk+1, pD,k+1.) Then the PHD prediction and update are respectively given by

vk+1|k(x) = γ(x) +
〈
vk|kpS , f(x|·)〉 , (5)

vk+1|k+1(x) = [1− pD(x)]vk+1|k(x) +
∑

z∈Zk+1

pD(x)g(z|x)vk+1|k(x)
κk+1(z) +

〈
pDg(z|·), vk+1|k

〉 . (6)

Sequential Monte Carlo (SMC) implementations of the PHD recursion [27], [30], [35], closed form

solutions [31], as well as generalizations [22], [32] have opened the door to numerous novel extensions

and applications.

D. Probability generating functionals (PGFl)

Apart from the probability density, the probability generating functional (PGFl) is another fundamental

descriptor of an RFS. Following [6], [29], the probability generating functional (PGFl) G[·] of an RFS

X on X is defined by

G[h] ≡ E[hX ], (7)

where h is any real-valued function on X such that 0 ≤ h(x) ≤ 1, and

hX =
∏

x∈X

h(x), with h∅ = 1

The functional derivative of the PGFl can be defined, if the limit exists, as follows

G(1)[g; ζ] = lim
ε→0

G[g + εζ]−G[g]
ε

G(i)[g; ζ1, ..., ζi] = lim
ε→0

G(i−1)[g + εζi; ζ1, ..., ζi−1]−G(i−1)[g; ζ1, ..., ζi−1]
ε

The ith functional derivative of the PGFl is linear in the each of the directions ζ1, ..., ζi. For more technical

details on functional derivatives of the PGFl, we refer the reader to [28] and the references therein.
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It was noted in [34] that a linear functional in each of the variables ζ1, ..., ζi can be identified with a

measure µ on X i via

µ[ζ1, ..., ζi] =
∫

ζ1(x1), ..., ζi(xi)µ(dx1, ..., dxi).

That is, we treat the measure µ as a functional that takes the functions ζ1, ..., ζi to the reals. If the measure

µ admits a density f then,

µ[ζ1, ..., ζi] =
∫

...

∫
ζ1(x1), ..., ζi(xi)f(x1, .., xi)dx1...dxi (8)

and the rather suggestive notation µ[δx1 , ..., δxi
] ≡ f(x1, ..., xi) can be used, where δx can be interpreted

as a Dirac delta centered at x.

Treating G(i)[g; ·, ..., ·] as a measure, and G(i)[g; δx1 , ..., δxi
] as its density, we use the set derivative

notation
∂

∂{x1, ..., xi}

∣∣∣∣
h

G[·] = G(i)[h; δx1 , ..., δxi
]

since this is suggestive of ordinary derivatives. The rules for this type of differentiation are established

in [20]. It follows from [6] that the multi-target density p and the PHD v (if they exist) can be recovered

from the PGFl by set differentiation

p(X) =
∂

∂X

∣∣∣∣
h=0

G[h], (9)

v(x) =
∂

∂x

∣∣∣∣
h=1

G[h]. (10)

The cardinality (number of elements) of X , denoted as |X|, is a discrete random variable whose

probability generating function (PGF) G(·) can be obtained by setting the function h in the PGFl G[·] to

a constant z. Note the distinction between the PGF and PGFl by the round and square brackets on the

argument. The cardinality distribution ρ (the probability distribution of the cardinality |X|) and the PGF

G(·) are Z-transform pairs.

A Poisson RFS X on X is one that is completely characterized by its PHD function v [6], [29]. The

cardinality of a Poisson RFS is Poisson with mean 〈v, 1〉, and for a given cardinality the elements of X

are each independent and identically distributed with probability density v/ 〈v, 1〉. The PGFl of a Poisson

RFS is

G[h] = exp(〈v, h− 1〉). (11)

A multi-Bernoulli RFS X on X is a union
⋃M

i=1 X(i) of independent RFSs X(i) that has probability

1 − r(i) of being empty, and probability r(i) ∈ (0, 1) of being a singleton whose (only) element is
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distributed according to a probability density p(i) (defined on X ), [21]. The PGFl of a multi-Bernoulli

RFS is given by

G[h] =
∏M

i=1

(
1− r(i) + r(i)〈p(i), h〉

)
. (12)

A multi-Bernoulli RFS is thus completely described by the multi-Bernoulli parameters {(r(i), p(i))}M
i=1.

The parameter r(i) is the existence probability of the ith object while p(i) is the probability density of

the state conditional on its existence.

Examples involving Poisson and multi-Bernoulli RFSs are those associated with multi-target Markov

transitions and multi-target likelihood functions. Given a multi-target state X , at time k, the multi-target at

the next time step is modeled by the union of a Poisson birth RFS with intensity γ and a multi-Bernoulli

surviving RFS with parameter set {(pS(x), f(·|x) : x ∈ X}. If the birth RFS and the surviving RFS are

independent, then the PGFl Gk+1|k[·|X] of the multi-target transition density fk+1|k(·|X) is given by

Gk+1|k[h|X] = exp(〈γ, h− 1〉)
∏

x∈X

(1− pS(x) + pS(x) 〈f( : |x), h( : )〉)

= exp(〈γ, h− 1〉) (1− pS + pS 〈f( : |·), h( : )〉)X . (13)

Similarly, the multi-target measurement is modelled by the union of a Poisson clutter RFS with intensity

κ and a multi-Bernoulli detection RFS with parameters {(pD(x), g(·|x) : x ∈ X}. If the clutter RFS and

the detection RFS are independent, then the PGFl Gk+1[·|X] of the multi-target likelihood gk+1(·|X) is

given by

Gk+1[h|X] = exp(〈κ, h− 1〉) (1− pD + pD 〈g( : |·), h( : )〉)X .

E. Factorial moment measures

Factorial moment measures are a useful generalization of the PHD to higher order moments of an

RFS. To define the factorial moment measures, we treat a measure µ as a functional that takes a function

g on X i to the real line via:

µ[g] =
∫

g(y1, ..., yi)µ(dy1, ..., dyi).

In this sense, the PHD v can be treated as a measure on X via v[g] = 〈g, v〉
The ith f actorial moment measure φ(i) of an RFS Y on X is a measure on X i defined by (see [29]

pp. 111)

φ(i)[g] = E


 ∑

y1 6=y2 6=... 6=yi∈Y

g(y1, ..., yi)


 .
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Note that the PHD measure v[·] is the first factorial moment measure. The product density %(i) of a

factorial moment measure φ(i) is the density (if exists) w.r.t. the Lebesgue measure, i.e.

φ(i)[g] =
∫

g(y1, ..., yi)%(i)(y1, ..., yi)dy1...dyi.

Note that the PHD (function) v(·) is the product density of the first factorial moment measure. For a

Poisson RFS with PHD (or intensity function) v, (see [ [29] pp. 44])

%(i)(y1, ..., yi) = v(y1)...v(yi)

and so
∫ ∑

y1 6=y2 6=...6=yi∈Y

g(y1, ..., yi)p(Y )δY = E


 ∑

y1 6=y2 6=... 6=yi∈Y

g(y1, ..., yi)




=
∫

g(y1, ..., yi)v(y1)...v(yi)dy1...dyi. (14)

We will call on the above formula for the derivations of the smoothed moments and cardinality.

III. THE PHD SMOOTHER

Forward-backward smoothing consists of forward filtering followed by backward smoothing. In the

forward filtering, the posterior density is propagated forward to time k via the Bayes recursion. In the

backward smoothing step, the smoothed density is propagated backward, from time k to time k′ < k,

via the backward smoothing recursion (see for example [16]). In the multi-target case, the multi-target

posterior is propagated forward to time k via the multi-target Bayes recursion (2)-(3) and the smoothed

multi-target density is propagated backward, from time k to time k′ < k, via the multi-target backward

smoothing recursion

pk′|k(X) = pk′|k′(X)
∫

fk′+1|k′(Y |X)
pk′+1|k(Y )
pk′+1|k′(Y )

δY. (15)

While the FISST multi-target density is not a probability density [21], the recursion (15) has the same

form as the standard backward smoother expressed in terms of probability densities [16]. A simple way

to derive (15) is to first apply the same argument as per the standard backward smoother to relevant

RFS probability densities, then invoke the relationship between FISST density/integration with measure

theoretic density/integration in [30].

As with the multi-target Bayes filter, the multi-target forward-backward smoother is computationally

intractable in general. We consider in this paper a first order moment approximation that propagates

the PHD forward and backward. The PHD forward propagation is accomplished by the PHD recursion

(5)-(6). The PHD backward propagation is given by the following result.
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Proposition 1: If the filtered and the predicted multi-target RFSs are Poisson, then the smoothed PHD

vk′|k can be computed recursively by

vk′|k(x) = vk′|k′(x)
(

1− pS(x) + pS(x)
〈

f(·|x)
vk′+1|k′

, vk′+1|k

〉)
. (16)

Note that the smoothed PHD from the previous time step, vk′+1|k, need not be Poisson. To prove this

result, we need the following mathematical aid.

Lemma 1: Given α, β : X →R, and c ∈ R,

∂

∂Y

∣∣∣∣
g=0

exp(〈α, g〉) (〈β, g〉+ c) =


c +

∑

y∈Y

β(y)
α(y)


αY . (17)

This is a special case of Lemma 2 in Section IV.

Proof of Proposition 1: For the smoothed multi-target state with density pk′|k given by (15), the PGFl

is

Gk′|k[h] =
∫

hXpk′|k(X)δX

=
∫ ∫

hXfk′+1|k′(Y |X)pk′|k′(X)δX
pk′+1|k(Y )
pk′+1|k′(Y )

δY

=
∫ ∫

hX ∂

∂Y

∣∣∣∣
g=0

Gk′+1|k′ [g|X]pk′|k′(X)δX
pk′+1|k(Y )
pk′+1|k′(Y )

δY

=
∫

∂

∂Y

∣∣∣∣
g=0

∫
hXGk′+1|k′ [g|X]pk′|k′(X)δX

pk′+1|k(Y )
pk′+1|k′(Y )

δY

Substituting (13) for Gk′+1|k′ [g|X], gives

Gk′|k[h]=
∫

∂

∂Y

∣∣∣∣
g=0

∫
hX(1− pS + pS 〈f( : |·), g( : )〉)X

× exp(〈γ, g − 1〉)pk′|k′(X)δX
pk′+1|k(Y )
pk′+1|k′(Y )

δY

=
∫

∂

∂Y

∣∣∣∣
g=0

Gk′|k′[h(1− pS + pS〈f( : |·), g( : )〉)]

× exp(〈γ, g − 1〉) pk′+1|k(Y )
pk′+1|k′(Y )

δY

Using the assumption that the filtered multi-target state is Poisson i.e. Gk′|k′ [h] = exp(
〈
vk′|k′ , h− 1

〉
)

gives (18).

Gk′|k[h] =
∫

∂

∂Y

∣∣∣∣
g=0

exp(
〈
vk′|k′ , h (1− pS + pS 〈f( : |·), g( : )〉)− 1

〉
)

× exp(〈γ, g − 1〉) pk′+1|k(Y )
pk′+1|k′(Y )

δY. (18)
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The smoothed PHD can be obtained by differentiating the PGFl in (18):

vk′|k(x) =
∂

∂x

∣∣∣∣
h=1

Gk′|k[h]

=
∂

∂x

∣∣∣∣
h=1

∫
∂

∂Y

∣∣∣∣
g=0

exp(〈γ, g − 1〉)

× exp(
〈
vk′|k′, h (1− pS + pS 〈f(: |·), g(: )〉)− 1

〉
)
pk′+1|k(Y )
pk′+1|k′(Y )

δY

=
∫

∂

∂Y

∣∣∣∣
g=0

exp(〈γ, g − 1〉)

× ∂

∂x

∣∣∣∣
h=1

exp(
〈
vk′|k′ , h (1− pS + pS 〈f( : |·), g( : )〉)− 1

〉
)

× pk′+1|k(Y )
pk′+1|k′(Y )

δY (19)

Now, consider the derivative w.r.t. x in (19)

∂

∂x

∣∣∣∣
h=1

exp(
〈
vk′|k′ , h (1− pS + pS 〈f( : |·), g( : )〉)− 1

〉
)

= exp(
〈
vk′|k′ , (1− pS + pS 〈f( : |·), g( : )〉)− 1

〉
)

× vk′|k′(x) (1− pS(x) + pS(x) 〈f( : |x), g( : )〉) . (20)

The exponent in the RHS of (20) can be rearranged by changing the order of integration as follows

〈
vk′|k′ , (1− pS + pS 〈f( : |·), g( : )〉)− 1

〉

=
〈
vk′|k′(·), pS(·) 〈f( : |·), g( : )〉〉− 〈

vk′|k′ , pS

〉

=
〈〈

vk′|k′(·)pS(·), f( : |·)〉 , g( : )
〉− 〈〈

vk′|k′(·)pS(·)f( : |·)〉 , 1
〉

=
〈〈

vk′|k′(·)pS(·), f( : |·)〉 , g( : )− 1
〉

=
〈
vk′+1|k′ − γ, g − 1

〉
. (21)

and hence

exp(〈γ, g − 1〉) ∂

∂x

∣∣∣∣
h=1

exp(
〈
vk′|k′ , h (1− pS + pS 〈f( : |·), g( : )〉)− 1

〉
)

= exp(〈γ, g − 1〉) exp(
〈
vk′+1|k′ − γ, g − 1

〉
)vk′|k′(x) (1− pS(x) + pS(x) 〈f( : |x), g( : )〉)

= exp(
〈
vk′+1|k′ , g − 1

〉
)vk′|k′(x) (1− pS(x) + pS(x) 〈f( : |x), g( : )〉) . (22)

Thus, substituting (22) into (19) gives

vk′|k(x) = vk′|k′(x)
∫

∂

∂Y

∣∣∣∣
g=0

exp(
〈
vk′+1|k′ , g − 1

〉
)

× (1− pS(x) + pS(x) 〈f( : |x), g( : )〉)
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× pk′+1|k(Y )
pk′+1|k′(Y )

δY

Taking exp(− 〈
vk′+1|k′ , 1

〉
) outside the derivative, and applying Lemma 1 with α = vk′+1|k′ , β =

pS(x)f(·|x), c = 1− pS(x) yields

vk′|k(x) = vk′|k′(x) exp(− 〈
vk′+1|k′ , 1

〉
)
∫

∂

∂Y

∣∣∣∣
g=0

exp(
〈
vk′+1|k′ , g

〉
)

× (1− pS(x) + pS(x) 〈f( : |x), g( : )〉)

× pk′+1|k(Y )
pk′+1|k′(Y )

δY

Using the Poisson assumption on pk′+1|k′ gives

vk′|k(x) = vk′|k′(x)
∫ 

1−pS(x)+pS(x)
∑

y∈Y

f(y|x)
vk′+1|k′(y)




×
vY
k′+1|k′ exp(− 〈

vk′+1|k′ , 1
〉
)

pk′+1|k′(Y )
pk′+1|k(Y )δY

= vk′|k′(x)
∫ 

1−pS(x)+pS(x)
∑

y∈Y

f(y|x)
vk′+1|k′(y)




× pk′+1|k(Y )δY.

Taking the integral inside the bracket and applying Campbell’s theorem gives

vk′|k(x)=vk′|k′(x)
(
1−pS(x)+pS(x)

〈
f(·|x)
vk′+1|k′

, vk′+1|k

〉)
.

IV. SMOOTHED CARDINALITY DISTRIBUTION AND MOMENTS

In the previous section we made no assumption on the form of the smoothed multi-target density

pk′+1|k to calculate the smoothed PHD vk′|k. If we further assume that smoothed multi-target density

pk′+1|k is Poisson, then the cardinality distribution and cardinality moments of the smoothed multi-target

density pk′|k can also be calculated in closed form.

A. Smoothed cardinality distribution

Proposition 2: Under the premises of Proposition 1, if the smoothed multi-target density pk′+1|k is

Poisson, then the smoothed cardinality ρk′|k is given by

ρk′|k(n) = exp
(〈

γvk′+1|k
vk′+1|k′

− vk′+1|k + vk′+1|k′ − γ − vk′|k′ , 1
〉)

×
n∑

i=0

〈
vk′|k′ , 1−pS

〉n−i

(n− i)!

〈
vk′+1|k, 1−

γ

vk′+1|k′

〉i

.

see appendix for proof.
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B. Moments of the smoothed cardinality

Proposition 3: Under the premises of Proposition 1, if the smoothed multi-target density pk′+1|k is

Poisson, then the nth moment of the smoothed cardinality is

G
(n)
k′|k = n!

n∑

i=0

〈
vk′|k′ , 1− pS

〉n−i

(n− i)!

〈
vk′+1|k, 1−

γ

vk′+1|k′

〉i

see appendix for proof.

Two special cases are the 1st and 2nd moments:

G
(1)
k′|k =

〈
vk′|k′ , 1− pS

〉
+

〈
vk′+1|k, 1−

γ

vk′+1|k′

〉i

,

G
(2)
k′|k =

〈
vk′|k′ , 1− pS

〉2 + 2
〈
vk′|k′ , 1− pS

〉〈
vk′+1|k, 1−

γ

vk′+1|k′

〉
+ 2

〈
vk′+1|k, 1−

γ

vk′+1|k′

〉2

.

The smoothed cardinality variance is then

var(Nk′|k) = G
(2)
k′|k + G

(1)
k′|k −

(
G

(1)
k′|k

)2

=
〈
vk′|k′ , 1− pS

〉
+

〈
vk′+1|k, 1−

γ

vk′+1|k′

〉
+

〈
vk′+1|k, 1−

γ

vk′+1|k′

〉2

.

Note that since the smoothed RFS density pk′+1|k is Poisson, var(N̂k′+1|k) =
〈
vk′+1|k, 1

〉
and hence

var(Nk′|k) = var(Nk′+1|k) +
〈
vk′|k′ , 1− pS

〉

+

〈
vk′+1|k

1 + γ
〈vk|k(:)pS(:),f(·|:)〉

, 1

〉2

−
〈

vk′+1|k
1 + 〈vk|k(:)pS(:),f(·|:)〉

γ

, 1

〉
. (23)

V. SEQUENTIAL MONTE CARLO IMPLEMENTATION

A review of the SMC implementation of the PHD forward filter from [30], and a corresponding SMC

implementation of the backward smoother is presented. This implementation can be easily extended to

the Gaussian particle approach proposed in [5]. A special resampling scheme is also proposed to mitigate

the effects of particle depletion (the situation that all but one of the importance weights are close to zero

[7]) specifically for use with the forward-backward smoother.

A. Forward Filter

Suppose that the posterior PHD at time k − 1 is of the form

vk−1|k−1(x) =
Lk−1∑

i=1

w
(i)
k−1|k−1δx

(i)
k−1|k−1

(x),
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then, given importance (or proposal) densities qk|k(·|xk−1, Zk) and bk|k−1(·|Zk), along with samples

x
(i)
P,k|k−1 ∼ qk|k(·|x(i)

k|k−1, Zk) (for i = 1, ..., Lk−1) and x
(j)
γ,k|k−1 ∼ bk|k−1(·|Zk) (for j = 1, ..., Lγ,k), the

predicted PHD vk|k−1 can be computed as

vk|k−1(x) =
Lk−1∑

i=1

w
(i)
P,k|k−1δx

(i)
P,k|k−1

(x) +
Lγ,k∑

j=1

w
(j)
γ,k|k−1δx

(j)
γ,k|k−1

(x),

where

w
(i)
P,k|k−1 =

w
(i)
k−1|k−1pS,k|k−1(x

(i)
k−1|k−1)fk|k−1(x

(i)
P,k|k−1|x

(i)
k|k−1)

qk|k(x
(i)
P,k|k−1|x

(i)
k−1|k−1, Zk)

,

w
(j)
γ,k|k−1 =

γk|k−1(x
(j)
γ,k|k−1)

Nγ,kbk|k−1(x
(j)
γ,k|k−1|Zk)

.

Suppose that the predicted PHD at time k is of the form

vk|k−1(x) =
Lk|k−1∑

j=1

w
(j)
k|k−1δx

(j)
k|k−1

(x),

then the posterior PHD at time k is given by

vk|k(x) =
Lk|k−1∑

j=1

(
w

(j)
M,k|k + w

(j)
D,k|k

)
δx

(j)
k|k−1

(x),

where

w
(j)
M,k|k = w

(j)
k|k−1(1− pD,k(x

(j)
k|k−1)),

w
(j)
D,k|k =

∑

z∈Zk

w
(j)
k|k−1pD,k(x

(j)
k|k−1)gk(z|x(j)

k|k−1)

κk(z) +
∑Lk|k−1

`=1 w
(`)
k|k−1pD,k(x

(`)
k|k−1)gk(z|x(`)

k|k−1)
.

B. Backward Smoother

Suppose that the filtered PHD at time k′ and smoothed PHD at time k′ + 1 from time k are given

respectively by the weighted samples

vk′|k′(x) =
Lk′∑

i=1

w
(i)
k′|k′δx

(i)
k′|k′

(x),

vk′+1|k(x) =
Lk′+1∑

j=1

w
(j)
k′+1|kδx

(j)
k′+1|k

(x).

Then, it can be easily shown that the smoothed PHD at time k′ from time k is given by the reweighted

samples

vk′|k(x) =
Lk′∑

i=1

w
(i)
k′|kδx

(i)
k′|k′

(x)
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where

w
(i)
k′|k = w

(i)
k′|k′

(
1− pS,k′+1|k′(x

(i)
k′|k′)+

Lk′+1∑

j=1

w
(j)
k′+1|kpS,k′+1|k′(x

(i)
k′|k′)fk′+1|k′(x

(j)
k′+1|k|x

(i)
k′|k′)

γk′+1|k′(x
(j)
k′+1|k) +

∑Lk′
`=1 w

(`)
k′|k′pS,k′+1|k′(x

(`)
k′|k′)fk′+1|k′(x

(j)
k′+1|k|x

(`)
k′|k′)




Notice that in this backward recursion, no new samples are produced; there is only a reweighting of the

samples of the previously filtered result at each backward time step.

C. Resampling

To mitigate the effects of particle depletion, resampling is also required in the forward backward

smoother. Suppose that the posterior PHD at time k is

vk|k(x) =
Lk|k∑

j=1

w
(j)
k|kδx

(j)
k|k

(x),

where w
(j)
k|k = w

(j)
M,k|k + w

(j)
D,k|k comprises weights corresponding to missed detections and measurement

returns respectively. In the standard multinomial resampling technique, particles are resampled directly in

proportion to the forward filter weights and directly from the forward filter samples. With this approach

however, the particle population tends to be dominated by the weights of measurement updated terms,

and consequently, particles whose weights are mainly derived from missed detection terms will rarely be

selected for resampling. In practice, this can be problematic as track losses are more likely to be incurred,

since the state space will be almost completely depleted of particles in regions (possibly occupied by

targets) where the posterior has assigned relatively low weights (for whatever reason). To circumvent this

issue, an adaptive resampling strategy is proposed in which a chosen number of particles are resampled

separately from the missed detection and measurement updated contributions respectively and then

recombined. Specifically, the strategy is to resample LM,k samples
{

x
(m)
k|k

}
m∈IM,k

from the population

corresponding to missed detections
{

w
(j)
M,k|k, x

(j)
k|k

}Lk|k

j=1
as well as LD,k samples

{
x

(`)
k|k

}
`∈ID,k

from the

population corresponding to measurement updates
{

w
(j)
D,k|k, x

(j)
k|k

}Lk|k

j=1
. The resampled approximation to

the posterior PHD is then given by

vk|k(x) = wM,k|k
∑

m∈IM,k

δx
(m)
k|k

(x) + wD,k|k
∑

`∈ID,k

δx
(`)
k|k

(x),

where wM,k|k =
∑Lk|k

m=1 w
(m)
M,k|k/LM,k and wD,k|k =

∑Lk|k
`=1 w

(`)
D,k|k/LD,k. Furthermore, as the number

of targets is time varying, it is necessary to adaptively allocate the number of particles present at each

time step. To ensure a sufficient numbers, the number of samples allocated at each time step should be

selected in proportion to the expected number of targets, i.e. choose LM,k + LD,k =
⌊
ρN̂k|k

⌉
for some

ρ > 0.
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VI. EXPERIMENTS

This section presents numerical studies to verify the performance of the proposed PHD forward-

backward smoother and to investigate its advantages and disadvantages over the PHD filter. Two examples

are presented; the first is a typical multiple target tracking scenario involving various births and deaths

while the second is a simplified scenario to specifically investigate the effect of missed detections and

false alarms on filter and smoother performance. The previously described SMC implementations of the

forward filter and backward smoother are used. Resampling is performed as per the adapted strategy

described in the previous section. State extraction is performed via k-means based partitioning of the

PHD samples to estimate the constituent population centres.

For performance evaluation, the Optimal SubPattern Assignment (OSPA) metric [26] is used to jointly

capture, in a mathematically consistent yet intuitively meaningful way, the difference in the cardinalities

and individual elements of two finite sets. An intuitive construction of the OSPA distance between two

finite sets X = {x1, . . . , xm} and Y = {y1, . . . , yn} can be read as follows. The set X with the smaller

cardinality is initially chosen as a reference. Determine the assignment between the m points of X and

points of Y , that minimizes the sum of the distances, subject to the constraint that distances are capped

at a preselected maximum or cut-off value c. This minimized sum of distances can be interpreted as the

“total localization error”, which are assigned by giving the points in X the “benefit of the doubt”. All

other points which remain unassigned are also penalized with a maximum error value of c. These errors

can interpreted as “cardinality errors” which are “penalized at the maximum rate”. The “total error”

committed is then the sum of the “total localization error” and the “total cardinality error”. Remarkably,

the “per target error”, obtained by normalizing “total error” by n, (the larger cardinality of the two

given sets) is a proper metric [26]. In other words the “per target error” enjoys all the properties of

the usual distance that we normally take for granted on a Euclidean space. The OSPA metric d̄
(c)
p is

formally defined as follows. Let d(c)(x, y) := min (c, ‖x− y‖) for x, y ∈ X , and Πk denote the set of

permutations on {1, 2, . . . , k} for any positive integer k. Then, for p ≥ 1, c > 0, and X = {x1, . . . , xm}
and Y = {y1, . . . , yn},

d̄(c)
p (X,Y ) :=

(
1
n

(
min
π∈Πn

m∑

i=1

d(c)(xi, yπ(i))
p + cp(n−m)

))1
p

(24)

if m ≤ n, and d̄
(c)
p (X, Y ) := d̄

(c)
p (Y, X) if m > n; and d̄

(c)
p (X,Y ) = d̄

(c)
p (Y, X) = 0 if m = n = 0. The

OSPA distance is thus interpreted as a p-th order per-target error, comprised of a p-th order per-target

localization error and a p-th order per-target cardinality error. The order parameter p determines the

sensitivity of the metric to outliers, and the cut-off parameter c determines the relative weighting of the
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penalties assigned to cardinality and localization errors.

A. Single Target Motion and Observation Model

The following single-target non-linear motion and observation models are used in these experiments.

Targets follow a nearly constant turn model and are observed via noisy bearings and range measurements.

Specifically, the single target state xk = [ x̃T
k , ωk ]T comprises the planar position and velocity x̃T

k =

[ px,k, ṗx,k, py,k, ṗy,k ]T and the turn rate ωk while the single target observation xk = [ rk, θk ]T comprises

the range and angle of arrival. The state transition model is

x̃k = F (ωk−1)x̃k−1 + Gwk−1

ωk = ωk−1 + ∆uk−1

where

F (ω) =




1 sin ω∆
ω 0 −1−cos ω∆

ω

0 cosω∆ 0 − sinω∆

0 1−cos ω∆
ω 1 sin ω∆

ω

0 sin ω∆ 0 cosω∆



, G =




∆2

2 0

T 0

0 ∆2

2

0 ∆



,

wk−1 ∼ N (·; 0, σ2
wI) and uk−1 ∼ N (·; 0, σ2

uI) with ∆ = 1s. The measurement model is given by

zk =


arctan(px,k/py,k)√

p2
x,k + p2

y,k


 + εk

where εk ∼ N (·; 0, Rk) with Rk = diag([ σ2
θ , σ

2
r ]T ).

B. Experiment 1

In this experiment, a typical multiple target tracking scenario is employed to verify the performance

of the proposed PHD forward-backward smoother (with a lag of 5 time steps) and to compare with that

of the PHD filter. A total of 5 targets appears on the scene at any one time, with various births and

deaths throughout the 100 time step scenario. The observation region is the half disc of radius 2000m.

The true trajectories are shown in Fig. 1 along with the start and stop positions of each track. In SMC

implementations, the transition is used for the proposal while resampling is performed at each time step

with a 50/50 apportionment of missed/measurement particles and with an average of 1000 particles per

surviving target.

The model parameters are as follows. The motion and measurement models are set to σw = 3m/s2,

σu = 0.1π/180rad/s, σθ = 0.3π/180rad, σr = 0.7m. The probability of target survival and

detection are pS,k(x) = 0.99 and pD,k(x) = 0.98. The birth process has PHD given by the Gaussian
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Fig. 1. Target trajectories in the rθ plane. Start/Stop positions for each track are shown with ◦/4.

mixture γk(x) =
∑5

i=1 wbN (x;m(i)
b , Pb) where wb = 0.1, m

(1)
b = [ − 1500, 0, 250, 0 0 ]T ,

m
(2)
b = [ − 250, 0, 1000, 0 0 ]T , m

(3)
b = [ 250, 0, 750, 0 0 ]T , m

(4)
b = [ 1000, 0, 1500, 0 0 ]T ,

m
(5)
b = [ 500, 0, 500, 0 0 ]T , Pb = diag([ 10, 10, 10, 10, π/180 ]T )2. Clutter is Poisson with intensity

λc = 1.1 × 10−3 (radm)−1 over the region [0, π]rad × [0, 2000]m (giving an average of 7 returns per

scan).

The results of a sample run of the filter and smoother are shown in Figs. 2 and 3 with the true and

estimated x and y positions versus time, and in Fig. 4 with a plot of true and estimated number of targets

versus time. Both the filter and smoother are able to identify target births and deaths, and maintain target

lock for the majority of each track. State estimates appear reasonable for both the filter and smoother

although those for the smoother appear marginally better. Both the filter and smoother also produce

reasonable estimates of the number of targets with the occasional dropped or false track.

To further investigate, 1000 Monte Carlo trials are performed for the filter and smoother on the same

data. In Fig 5, the mean and standard deviation of the estimated number of targets are shown. The filtered

and smoothed state estimates are evaluated using the Optimal Sub-Pattern Assignment (OSPA) metric

[26] for p = 1 and c = 100m. In Fig. 6, the MC average of the estimated cardinality and OSPA miss

distance for the filter and smoother is shown versus time. In Fig. 7, the MC average of the localization

and cardinality components of OSPA distance are shown versus time. These results suggest that overall,

the smoother slightly outperforms the filter in terms of the total miss distance. Furthermore, the smoother

outperforms the filter in terms of localization error (an average improvement of 1.4m or 33%) but both

are roughly on par in terms of cardinality error.
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Fig. 2. Filtered state estimates versus time.
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Fig. 3. Smoothed state estimates versus time.

The results for the smoother showed one apparent anomaly. There appears to be a noticeable rise in

the cardinality error committed by the smoother between times k = 46 and k = 50, which as it turns

out is due to the smoother prematurely dropping the track which later dies at time k = 51 (compare
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Fig. 4. Target number estimates for filter and smoother versus time.

with the single sample result in Fig 3). Moreover, the apparent coincidence of the 5 time step difference

between the actual and smoother-declared times of track death, with the smoother delay of 5 time steps,

is due to some undesirable behaviour in the smoother. This phenomenon is examined more closely in

the following experiment.
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Fig. 5. Average cardinality statistics versus time for filter and smoother.
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Fig. 6. OSPA miss distance versus time for filter and smoother.
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Fig. 7. OSPA localization and cardinality components versus time for filter and smoother.

C. Experiment 2

This experiment investigates the performance of the filter and forward-backward smoother specifically

in relation to missed detections and false alarms. The observation region is again the half disc of radius

2000m. Exactly 2 targets are present throughout the entire scenario of 100 time steps. Each target starts

just above the horizontal axis, near the edges of the observation region, and travels diagonally upwards.

Observations for the filter and smoother are generated as follows. Target detections are perfect except

for measurement noise. Clutter is negligible. To investigate the effects of missed detections, some of the

measurements generated by the track on the left are purposely deleted, in particular the two consecutive

measurements at times k = 10 and k = 11 respectively. To investigate the effects of false alarms, two
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spurious measurements are artificially inserted, at times k = 30 and k = 31 respectively, in the lower

corner of the observation space and mimicking the motion of an actual track. The true trajectories are

shown in Fig. 8 along with the start and stop positions of each track. In implementations, the transition

is used for the proposal, while resampling is performed at each time step with a 50/50 apportionment

of missed/measurement particles and with an average of 1000 particles per surviving target.

  500

  1000

  1500

  2000

+60

+30

0

−30

−60

−90 +90

radius (m)

angle (deg)

Fig. 8. Target trajectories in the rθ plane. Start/Stop positions for each track are shown with ◦/4.

The parameters for the single target motion and measurement models are σw = 2m/s2 and σu =

0.2π/180rad/s, and σθ = π/180rad and σr = 3m. The probability of survival is a flat pS,k(x) = 0.99.

The probability of detection is a flat pD,k(x) = 0.98, except for two steep Gaussian notches, each

centred on the locations of the two missed detections where the detection probability drops to pD,k(x) =

0.08 (i.e. the modelled field of view is flat but drops sharply at the locations of the target where two

consecutive measurements were deleted). The birth process has PHD given by a Gaussian mixture with

two components, each of weight 0.01 and centred on the initial states of the two tracks. Clutter follows

a Poisson RFS with uniform spatial distribution but almost negligible mean number of returns.

The estimated x and y target positions for the filter and the smoother with a lag of 5 time steps, are

plotted in Figs. 9 and 10. A plot of the estimated number of targets versus time is shown in Fig. 11 for

the filter and smoother. Both the filter and smoother are able to identify the target births and track their

motions. It can further be seen that the filter temporarily drops one of the target tracks at times k = 10

and k = 11, due to the two consecutive missed detections at these times, whereas the smoother is able to

correct for the lost measurements and hence lost track. It can also be seen that the filter declares a false

track at times k = 30 and k = 31, due to false alarms, whereas the smoother is able to disregard the

extraneous tracks. Surprisingly however, at times k = 5 and k = 6, the smoother drops one track which
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the filter does not, the same track that the filter later drops at times k = 10 and k = 11. Note again the

coincidence between the chosen smoother lag of 5 time steps and the 5 time step difference between the

instants when the filter and smoother suffer track losses.
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Fig. 9. Filtered state estimates versus time.

10 20 30 40 50 60 70 80 90 100
−2000

−1000

0

1000

2000

Time

x−
co

or
di

na
te

 (
m

)

 

 

10 20 30 40 50 60 70 80 90 100
−2000

−1000

0

1000

2000

Time

y−
co

or
di

na
te

 (
m

)

True tracks
Smoother Estimates
Measurements

Fig. 10. Smoothed state estimates versus time.
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Fig. 11. Target number estimates for filter and smoother versus time.

On further investigation, it appears that such behaviour in the forward-backward smoother is not a

coincidence, whereby the backwards propagation of the smoother is generally unable to restore tracks

that are already lost by the filter. That is, when the filter has dropped a track for whatever reason, the

corresponding backward smoother is generally unable to recover it. It is conjectured that the cause may

be related to the strictly first order nature of the PHD backward smoother approximation to the full

smoothed posterior density. More specifically, it may be that the information pertaining to the cardinality

distribution is contained in only one parameter, the mass of the smoothed PHD, and hence may not

provide sufficient confidence to facilitate proper smoothing of ambiguous tracks. It is noted however that

the observed behaviour is not likely due to particle depletion, and hence unlikely to be an implementation

issue, since in the current implementation, the smoother merely reweights the particles generated by the

filter.

Remark: This behaviour may not be completely unexpected. Recall from (23) the expression for the

smoothed cardinality variance. Observe that var(Nk′|k) is not necessarily smaller than var(Nk′+1|k),

especially when the birth PHD γ is small compared to the PHD of surviving targets
〈
vk|k(:)pS(:), f(·| :)〉

and when the probability of target death 1− pS is high. Hence, there is no guarantee that the forward-

backward smoother improves cardinality estimates.

The results of 100 Monte Carlo runs further confirms the observations from the single sample results.

In Fig 12, the average estimated number of targets for the filter and smoother are shown. In Fig. 13, the
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total OSPA distance for c = 1 and p = 100m is shown, and in Fig. 14, the corresponding localization

and cardinality components are shown. It can be readily seen that the smoother generally outperforms the

filter. Moreover, the smoother generally achieves 50% improvement in localization error, but is still on-par

with the filter in cardinality error. The behaviour of the filter in regards in missed detections and false

alarms is also confirmed, with peaks in the total miss distance and cardinality error component curves,

at times k = 10, 11, and k = 30, 31. The corresponding behaviour of the smoother with a 5 step delay

is also confirmed, with only one peak in the total miss distance and cardinality error component curves,

at times k = 5, 6, due to its inability to recover the missed tracks from the filter at times k = 10, 11.
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Fig. 12. Average cardinality statistics versus time for filter and smoother.
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Fig. 13. OSPA miss distance versus time for filter and smoother.
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Fig. 14. OSPA localization and cardinality components versus time for filter and smoother.

VII. CONCLUSIONS

Using FISST and Campbell’s theorem, we have derived a backward PHD smoothing recursion along

with recursions for the smoother cardinality distribution and moments. While the backward PHD

smoothing recursion does not require the previous smoothed iterate to be Poisson, the recursion for

the cardinality distribution and moments does. Case studies have shown that PHD forward-backward

smoothing improves state error but does not necessarily improve cardinality error. The smoother does

correct for false estimates, but does not respond well to missed detections or decreases in the number

of targets. This seems to agree with theoretical analysis based on the derived backward recursion for

the moments. It is possible that the cause is related to the strictly first order nature of the PHD which

propagates cardinality information with a single parameter. Consequently, a PHD smoother may lack the

necessary degrees of freedom to suitably control the variance of the estimated cardinality. Future works

will investigate the feasibility of a Cardinalized PHD (CPHD) [22], [32] or a Multi-Bernoulli [21], [33]

based forward-backward smoother, both of which may have sufficient flexibility, but will most likely

incur added computational expense, to deliver improved cardinality estimates than over filtering alone.

VIII. APPENDIX

Lemma 2: Given α, β : X →R, and c ∈ R, define for each integer n ≥ 0,

Hn[g] = e〈α,g〉 (〈β, g〉+ c)n .
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Then

∂

∂Y

∣∣∣∣ Hn[g] = n!αY
n∑

i=0

ei

(
Y ;

β

α

)
Hn−i[g]
(n− i)!

, (25)

∂

∂Y

∣∣∣∣
g=0

Hn[g] = n!αY
n∑

i=0

ei

(
Y ;

β

α

)
cn−i

(n− i)!
, (26)

where β
α denotes the point wise quotient of the functions β, α and ei(Y ; φ) denotes the ith elementary

symmetric function evaluated at [φ(y)]y∈Y , i.e.

ei (Y ; φ) =
∑

S⊂Y,|S|=i

φS ,

with the standard convention that ei(Y ; φ) = 0 for |Y | < i, so that the sum effectively contains |Y |+ 1

terms, when |Y | < n.

Note that Lemma 1 used in the proof of Proposition 1 is the special case (n = 1) of this Lemma.

Proof: The proof makes use of the elementary symmetric function identity

ei(y1, ..., ym, ym+1; φ) = ei (y1, ..., ym; φ) + ei−1(y1, ..., ym; φ)φ(ym+1) (27)

Abbreviate: α(yi) by αi, β(yi) by βi, and note that

∂

∂∅

∣∣∣∣Hn[g] = Hn[g] (28)

∂

∂yi

∣∣∣∣Hn[g] = αie
〈α,g〉 (〈β, g〉+ c)n + nβie

〈α,g〉 (〈β, g〉+ c)n−1

= αiHn[g] + nβiHn−1[g]

= αi

(
Hn[g] + n

βi

αi
Hn−1[g]

)
(29)

From (28) and (29), it is clear that (25) holds for Y = ∅ and Y = {y1}. Suppose that (25) is true for

Y = {y1, ..., ym}, then

∂

∂Y ∪ {ym+1}

∣∣∣∣Hn[g] =
∂

∂ym+1

∣∣∣∣
∂

∂Y

∣∣∣∣ Hn[g]

= n!αY ∂

∂ym+1

∣∣∣∣
n∑

j=0

ej

(
Y ; β

α

)

(n− j)!
Hn−j [g]

= n!αY ∂

∂ym+1

∣∣∣∣




∑n−1
j=0

ej(Y ; β

α)
(n−j)! Hn−j [g]

+en

(
Y ; β

α

)
H0[g]




= n!αY




n−1∑
j=0

ej(Y ; β

α)
(n−j)!

∂
∂ym+1

∣∣∣Hn−j [g]

+en

(
Y ; β

α

)
∂

∂ym+1

∣∣∣ H0[g]
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Using (29) gives

∂

∂Y ∪ {ym+1}

∣∣∣∣Hn[g]

= n!αY




n−1∑
j=0

ej(Y ; β

α)
(n−j)! αm+1

×

 Hn−j [g]

+(n− j) βm+1

αm+1
Hn−j−1[g]




+αm+1en

(
Y ; β

α

)
H0[g]




= n!αY αm+1




n−1∑
j=0




ej(Y ; β

α)
(n−j)! Hn−j [g]+

ej(Y ; β

α)
(n−j−1)!

βm+1

αm+1
Hn−j−1[g]




+en

(
Y ; β

α

)
H0[g]




= n!αY ∪{ym+1}




∑n−1
j=0

ej(Y ; β

α)
(n−j)! Hn−j [g]

+
∑n−1

j=0

ej(Y ; β

α)
(n−j−1)!

βm+1

αm+1
Hn−j−1[g]

+en

(
Y ; β

α

)
H0[g]




= n!αY ∪{ym+1}




Hn[g]
n! +

∑n−1
j=1

ej(Y ; β

α)
(n−j)! Hn−j [g]

+
∑n−2

j=0

ej(Y ; β

α)
(n−j−1)!

βm+1

αm+1
Hn−j−1[g]

+en−1

(
Y ; β

α

)
βm+1

αm+1
H0[g]

+en

(
Y ; β

α

)
H0[g]




Set i to j + 1 gives

∂

∂Y ∪ {ym+1}

∣∣∣∣Hn[g]

= n!αY ∪{ym+1}




Hn[g]
n! +

∑n−1
j=1

ej(Y ; β

α)
(n−j)! Hn−j [g]

+
∑n−1

i=1

ei−1(Y ; β

α)
(n−i)!

βm+1

αm+1
Hn−i[g]

+en−1

(
Y ; β

α

)
βm+1

αm+1
H0[g]

+en

(
Y ; β

α

)
H0[g]




= n!αY ∪{ym+1}




Hn[g]
n!

+
n−1∑
i=1


 ei

(
Y ; β

α

)
+

ei−1

(
Y ; β

α

)
βm+1

αm+1


 Hn−i[g]

(n−i)!

+


 en−1

(
Y ; β

α

)
βm+1

αm+1

+en

(
Y ; β

α

)

H0[g]
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= n!αY ∪{ym+1}




Hn[g]
n!

+
n−1∑
i=1

(
ei

(
Y ∪ {ym+1}; β

α

))
Hn−i[g]
(n−i)!

+en

(
Y ∪ {ym+1}; β

α

)
H0[g]




Using (27)

∂

∂Y ∪ {ym+1}

∣∣∣∣Hn[g]

= n!αY ∪{ym+1}
n∑

i=0

ei

(
Y ∪ {ym+1}; β

α

)
Hn−i[g]
(n− i)!

Hence (25) holds by the principle of induction and (26) follows as Hn[0] = c .

Proof of Proposition 2: Recall the PGFl from (18) and substitute h = z to obtain the PGF of the

smoothed cardinality

Gk′|k(z) =
∫

∂

∂Y

∣∣∣∣
g=0

exp(〈γ, g−1〉) exp(
〈
vk′|k′ , z (1−pS + pS 〈f( : |·), g( : )〉)− 1

〉
)
pk′+1|k(Y )
pk′+1|k′(Y )

δY

=
∫

∂

∂Y

∣∣∣∣
g=0

exp(〈γ, g−1〉) exp(z
〈
vk′|k′ , 1−pS + pS 〈f( : |·), g( : )〉〉− 〈

vk′|k′ , 1
〉
)
pk′+1|k(Y )
pk′+1|k′(Y )

δY

=
∫

∂

∂Y

∣∣∣∣
g=0

exp(〈γ, g−1〉) exp(z
(〈

vk′+1|k′−γ, g
〉

+
〈
vk′|k′ , 1−pS

〉)−〈
vk′|k′ , 1

〉
)
pk′+1|k(Y )
pk′+1|k′(Y )

δY.

(30)

where (30) follows by changing the order of integration and rearranging the term:

〈
vk′|k′ , 1− pS + pS 〈f( : |·), g( : )〉〉 =

〈
vk′|k′ , 1− pS

〉
+

〈
vk′|k′ , pS 〈f( : |·), g( : )〉〉

=
〈
vk′|k′ , 1− pS

〉
+

〈〈
vk′|k′ , pS , f( : |·)〉 , g( : )

〉

=
〈
vk′+1|k′ − γ, g

〉
+

〈
vk′|k′ , 1− pS

〉
.

Note also that

dn

dzn

∣∣∣∣ exp(z
(〈

vk′+1|k′ − γ, g
〉

+
〈
vk′|k′ , 1− pS

〉)− 〈
vk′|k′ , 1

〉
)

= exp(z
(〈

vk′+1|k′ − γ, g
〉

+
〈
vk′|k′ , 1− pS

〉)− 〈
vk′|k′ , 1

〉
)
(〈

vk′+1|k′ − γ, g
〉

+
〈
vk′|k′ , 1− pS

〉)n

(31)

dn

dzn

∣∣∣∣
z=0

exp(z
(〈

vk′+1|k′ − γ, g
〉

+
〈
vk′|k′ , 1− pS

〉)− 〈
vk′|k′ , 1

〉
)

= exp(− 〈
vk′|k′ , 1

〉
)
(〈

vk′+1|k′ − γ, g
〉

+
〈
vk′|k′ , 1− pS

〉)n

The cardinality distribution is given by

ρk′|k(n) =
1
n!

dn

dzn

∣∣∣∣
z=0

Gk′|k(z)
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=
1
n!

∫
∂

∂Y

∣∣∣∣
g=0

exp(〈γ, g − 1〉)

× dn

dzn

∣∣∣∣
z=0

exp(z
(〈

vk′+1|k′ − γ, g
〉

+
〈
vk′|k′ , 1− pS

〉)− 〈
vk′|k′ , 1

〉
)
pk′+1|k(Y )
pk′+1|k′(Y )

δY

=
1
n!

∫
∂

∂Y

∣∣∣∣
g=0

exp(〈γ, g − 1〉)

× exp(− 〈
vk′|k′ , 1

〉
)
(〈

vk′+1|k′ − γ, g
〉

+
〈
vk′|k′ , 1− pS

〉)n pk′+1|k(Y )
pk′+1|k′(Y )

δY

=
1
n!

exp(− 〈
γ + vk′|k′ , 1

〉
)

×
∫

∂

∂Y

∣∣∣∣
g=0

exp(〈γ, g〉) (〈
vk′+1|k′ − γ, g

〉
+

〈
vk′|k′ , 1− pS

〉)n pk′+1|k(Y )
pk′+1|k′(Y )

δY. (32)

Let α = γ, β = vk′+1|k′ − γ, c =
〈
vk′|k′ , 1− pS

〉
, and applying Lemma 2 gives

ρk′|k(n) = exp(− 〈
γ + vk′|k′ , 1

〉
)
∫

αY
n∑

i=0

ei

(
Y ;

β

α

)
cn−i

(n− i)!
pk′+1|k(Y )
pk′+1|k′(Y )

δY (33)

= exp(− 〈
γ + vk′|k′ , 1

〉
)

n∑

i=0

cn−i

(n− i)!

∫
αY ei

(
Y ;

β

α

)
pk′+1|k(Y )
pk′+1|k′(Y )

δY (34)

= exp(− 〈
γ + vk′|k′ , 1

〉
)

n∑

i=0

cn−i

(n− i)!

∫
ei

(
Y ;

β

α

)
αY

exp(− 〈
vk′+1|k′ , 1

〉
)vY

k′+1|k′
pk′+1|k(Y )δY

(35)

= exp(
〈
vk′+1|k′ − γ − vk′|k′ , 1

〉
)

n∑

i=0

cn−i

(n− i)!

∫
ei

(
Y ;

β

α

)(
α

vk′+1|k′

)Y

pk′+1|k(Y )δY (36)

= exp(
〈
vk′+1|k′ − γ − vk′|k′ , 1

〉
)

n∑

i=0

cn−i

(n− i)!

∫
ei

(
Y ;

β

α

)(
α

vk′+1|k′

)Y

× exp(− 〈
vk′+1|k, 1

〉
)vY

k′+1|kδY (37)

= exp(
〈−vk′+1|k + vk′+1|k′ − γ − vk′|k′ , 1

〉
)

n∑

i=0

cn−i

(n− i)!

∫
ei

(
Y ;

β

α

)(
αvk′+1|k
vk′+1|k′

)Y

δY

(38)

= exp(
〈

αvk′+1|k
vk′+1|k′

− vk′+1|k + vk′+1|k′ − γ − vk′|k′ , 1
〉

)
n∑

i=0

cn−i

(n− i)!

∫
ei

(
Y ;

β

α

)

× exp(
(
−

〈
αvk′+1|k
vk′+1|k′

, 1
〉)(

αvk′+1|k
vk′+1|k′

)Y

δY. (39)

where (35) and (37) follow from the Poisson assumption on pk′+1|k′ and pk′+1|k.

The set integral in (39) can be rewritten as follows:
∫

ei

(
Y ;

β

α

)
exp

(
−

〈
αvk′+1|k
vk′+1|k′

, 1
〉)(

αvk′+1|k
vk′+1|k′

)Y

δY (40)
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=
∫ 

 ∑

S⊂Y,|S|=i

(
β

α

)S

 exp

(
−

〈
αvk′+1|k
vk′+1|k′

, 1
〉)(

αvk′+1|k
vk′+1|k′

)Y

δY

=
∫ 

 ∑

y1 6=y2 6=... 6=yi∈Y

β(y1)
α(y1)

...
β(yi)
α(yi)


 exp

(
−

〈
αvk′+1|k
vk′+1|k′

, 1
〉)(

αvk′+1|k
vk′+1|k′

)Y

δY (41)

Note that (41) is the ith factorial moment, evaluated at g defined by g(y1, ..., yi) = β
α(y1)...β

α(yi), of a

Poisson RFS with (FISST) density exp
(
−

〈
αvk′+1|k
vk′+1|k′

, 1
〉)(

αvk′+1|k
vk′+1|k′

)Y
. Since the product densities of a

Poisson RFS is the product of the PHDs, using (14) we have
∫ 

 ∑

y1 6=y2 6=... 6=yi∈Y

β(y1)
α(y1)

...
β(yi)
α(yi)


 exp

(
−

〈
αvk′+1|k
vk′+1|k′

, 1
〉)(

αvk′+1|k
vk′+1|k′

)Y

δY

=
∫

β(y1)
α(y1)

...
β(yi)
α(yi)

α

vk′+1|k′
(y1)vk′+1|k(y1)...

α

vk′+1|k′
(yi)vk′+1|k(yi)dy1...dyi

=
〈

β

α
,
αvk′+1|k
vk′+1|k′

〉i

.

Therefore

ρk′|k(n) = exp
(〈

αvk′+1|k
vk′+1|k′

− vk′+1|k + vk′+1|k′ − γ − vk′|k′ , 1
〉) n∑

i=0

cn−i

(n− i)!

〈
β

α
,
αvk′+1|k
vk′+1|k′

〉i

= exp
(〈

αvk′+1|k
vk′+1|k′

− vk′+1|k + vk′+1|k′ − γ − vk′|k′ , 1
〉) n∑

i=0

cn−i

(n− i)!

〈
β

vk′+1|k′
, vk′+1|k

〉i

= exp
(〈

γvk′+1|k
vk′+1|k′

− vk′+1|k + vk′+1|k′ − γ − vk′|k′ , 1
〉)

×
n∑

i=0

〈
vk′|k′ , 1− pS

〉n−i

(n− i)!

〈
vk′+1|k′ − γ

vk′+1|k′
, vk′+1|k

〉i

.

Proof of Proposition 3: The nth moment of the smoothed cardinality is obtained by differentiating

(30) at z = 1

G
(n)
k′|k =

dn

dzn

∣∣∣∣
z=1

Gk′|k(z)

=
∫

∂

∂Y

∣∣∣∣
g=0

exp (〈γ, g − 1〉)

× dn

dzn

∣∣∣∣
z=1

exp
(
z

(〈
vk′+1|k′ − γ, g

〉
+

〈
vk′|k′ , 1− pS

〉)− 〈
vk′|k′ , 1

〉) pk′+1|k(Y )
pk′+1|k′(Y )

δY (42)

but from (31), setting z = 1 gives

dn

dzn

∣∣∣∣
z=1

exp
(
z

(〈
vk′+1|k′ − γ, g

〉
+

〈
vk′|k′ , 1− pS

〉)− 〈
vk′|k′ , 1

〉)

= exp
(〈

vk′+1|k′ − γ, g
〉

+
〈
vk′|k′ , 1− pS

〉− 〈
vk′|k′ , 1

〉) (〈
vk′+1|k′ − γ, g

〉
+

〈
vk′|k′ , 1− pS

〉)n

= exp
(〈

vk′+1|k′ − γ, g
〉− 〈

vk′|k′ , pS

〉) (〈
vk′+1|k′ − γ, g

〉
+

〈
vk′|k′ , 1− pS

〉)n
.
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Hence, substituting this into (42) we have

G
(n)
k′|k =

∫
∂

∂Y

∣∣∣∣
g=0

exp (〈γ, g − 1〉) exp
(〈

vk′+1|k′ − γ, g
〉− 〈

vk′|k′ , pS

〉)

× (〈
vk′+1|k′ − γ, g

〉
+

〈
vk′|k′ , 1− pS

〉)n pk′+1|k(Y )
pk′+1|k′(Y )

δY

= exp
(−〈γ, 1〉 − 〈

vk′|k′ , pS

〉)

×
∫

∂

∂Y

∣∣∣∣
g=0

exp
(〈

vk′+1|k′ , g
〉) (〈

vk′+1|k′ − γ, g
〉

+
〈
vk′|k′ , 1− pS

〉)n pk′+1|k(Y )
pk′+1|k′(Y )

δY

= exp
(− 〈

vk′+1|k′ , 1
〉)

×
∫

∂

∂Y

∣∣∣∣
g=0

exp
(〈

vk′+1|k′ , g
〉) (〈

vk′+1|k′ − γ, g
〉

+
〈
vk′|k′ , 1− pS

〉)n pk′+1|k(Y )
pk′+1|k′(Y )

δY.

Let α = vk′+1|k′ , β = vk′+1|k′ − γ, c =
〈
vk′|k′ , 1− pS

〉
, and using Lemma 2 gives

G
(n)
k′|k = exp

(− 〈
vk′+1|k′ , 1

〉) ∫
n!αY

n∑

i=0

ei

(
Y ;

β

α

)
cn−i

(n− i)!
pk′+1|k(Y )
pk′+1|k′(Y )

δY

= n! exp
(− 〈

vk′+1|k′ , 1
〉) n∑

i=0

cn−i

(n− i)!

∫
ei

(
Y ;

β

α

)
αY pk′+1|k(Y )

pk′+1|k′(Y )
δY

= n! exp
(− 〈

vk′+1|k′ , 1
〉) n∑

i=0

cn−i

(n− i)!

∫
ei

(
Y ;

β

α

)
αY

exp
(− 〈

vk′+1|k′ , 1
〉)

vY
k′+1|k′

pk′+1|k(Y )δY

= n!
n∑

i=0

cn−i

(n− i)!

∫
ei

(
Y ;

β

α

)
pk′+1|k(Y )δY

= n!
n∑

i=0

cn−i

(n− i)!

∫ 
 ∑

S⊂Y,|S|=i

(
β

α

)S

 pk′+1|k(Y )δY

= n!
n∑

i=0

cn−i

(n− i)!

∫ 
 ∑

y1 6=y2 6=...6=yi∈Y

β(y1)
α(y1)

...
β(yi)
α(yi)


 pk′+1|k(Y )δY

Since pk′+1|k is Poisson, using the same arguments as those in Proposition 2, the set integral can be

simplified as follows:

∫
 ∑

y1 6=y2 6=...6=yi∈Y

β(y1)
α(y1)

...
β(yi)
α(yi)


 pk′+1|k(Y )δY =

∫
β(y1)
α(y1)

...
β(yi)
α(yi)

vk′+1|k(y1)...vk′+1|k(yi)dy1...dyi

=
〈

β

α
, vk′+1|k

〉i

.

Hence,

G
(n)
k′|k = n!

n∑

i=0

cn−i

(n− i)!

〈
β

α
, vk′+1|k

〉i
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= n!
n∑

i=0

〈
vk′|k′ , 1− pS

〉n−i

(n− i)!

〈
vk′+1|k′ − γ

vk′+1|k′
, vk′+1|k

〉i

= n!
n∑

i=0

〈
vk′|k′ , 1− pS

〉n−i

(n− i)!

〈
vk′+1|k, 1−

γ

vk′+1|k′

〉i

.
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