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Distributed Multi-Object Tracking Under Limited
Field of View Sensors

Hoa Van Nguyen, Hamid Rezatofighi, Ba-Ngu Vo, and Damith C. Ranasinghe

Abstract—We consider the challenging problem of tracking
multiple objects using a distributed network of sensors. In the
practical setting of nodes with limited field of views (FoVs),
computing power and communication resources, we develop a
novel distributed multi-object tracking algorithm. To accomplish
this, we first formalise the concept of label consistency, determine
a sufficient condition to achieve it and develop a novel label
consensus approach that reduces label inconsistency caused by
objects’ movements from one node’s limited FoV to another.
Second, we develop a distributed multi-object fusion algorithm
that fuses local multi-object state estimates instead of local
multi-object densities. This algorithm: i) requires significantly
less processing time than multi-object density fusion methods;
ii) achieves better tracking accuracy by considering Optimal
Sub-Pattern Assignment (OSPA) tracking errors over several
scans rather than a single scan; iii) is agnostic to local multi-
object tracking techniques, and only requires each node to
provide a set of estimated tracks. Thus, it is not necessary to
assume that the nodes maintain multi-object densities, and hence
the fusion outcomes do not modify local multi-object densities.
Numerical experiments demonstrate our proposed solution’s real-
time computational efficiency and accuracy compared to state-
of-the-art solutions in challenging scenarios.

Index Terms—Multi-sensor multi-object tracking, distributed
multi-object tracking, label consistency, track consensus.

I. INTRODUCTION

THe aim of Multi-Object Tracking (MOT) is to esti-
mate an unknown and time-varying number of object

trajectories from noisy sensor measurements. MOT is an
integral component in a multitude of applications in diverse
domains, including surveillance [1], robotics [2], [3], computer
vision [4], traffic monitoring [5], [6], cell biology [7], [8],
and space exploration [9]. However, MOT is complicated by
a time-varying number of objects, false alarms, misdetections,
and data association uncertainty, in addition to the uncertainty
resulting from process and measurement noise [10]. There
are three notable frameworks, amongst a range of algorithms,
for tackling an MOT problem: multiple hypotheses tracking
(MHT) [11], joint probabilistic data association (JPDA) [1],
and random finite set (RFS) [10].
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Recently, driven by progress in wireless communication and
sensing technologies, sensor networks comprising of inter-
connected nodes or agents with sensing, communication and
processing capabilities have attracted considerable research
interest [12]–[14]. Importantly, for MOT, a network of multiple
sensing nodes addresses the practical and critical problem of
limited observability of sensing modalities at a single node,
especially where objects are distributed across large spatial
regions [9], for example, tracking space debris using a net-
work of low-earth-orbit cube satellites [15]. Sensor networks
enable the inference of more accurate trajectories by fusing
information (e.g., estimates or densities) of multi-objects from
observations at individual nodes (with limited observability) in
a scalable (with respect to the number of nodes), flexible and
reliable (i.e., resilient to failures) manner [16]. However, lever-
aging these benefits requires a distributed mode of operation
for MOT where each node operates independently, without any
knowledge of the network topology. Consequently, due to the
significant benefits possible from using sensor networks for
multi-object tracking applications, distributed MOT (DMOT)
has attracted researchers’ growing interest in recent years.

DMOT is a nontrivial problem and entails additional chal-
lenges. In particular, a suitable fusion algorithm is required to
combine common information associated with multi-objects to
achieve improved tracking accuracy whilst merging comple-
mentary information to overcome the limited FoV of a single
sensor node. In principle, optimal fusion can be achieved
by preserving marginal and joint multi-object distributions
from all nodes [17]. However, maintaining these distributions
requires sharing common information among all nodes [12],
[18], which limits the flexibility and scalability of the network.
To maintain flexibility and scalability, robust (but sup-optimal)
fusion solutions have been developed to address the double-
counting of information when the common information is
unknown [19].

Recent fusion techniques for DMOT were mostly developed
from the random finite set framework because it facilitates
principled generalisation of (single-object) distributed estima-
tion to the multi-object case [18]. This framework offers a
convenient notion of multi-object (probability) density that
enabled the development of a suite of multi-object filters,
e.g., the probability hypothesis density (PHD) [20], cardi-
nalised PHD (CPHD) [21], multi-Bernoulli (MB) [10], [22],
[23], and labelled multi-Bernoulli (LMB) [24], generalised
labelled multi-Bernoulli (GLMB) [25], [26], and multi-scan
GLMB [27] filters. Many of these filters have been adapted
for distributed multi-object estimation via the concept of Gen-
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eralised Covariance Intersection (GCI1) [18], [33], e.g., PHD-
GCI [19], CPHD-GCI [12], MB-GCI [34], LMB-GCI [35],
and its variations [14], [36], [37].

When the nodes do not share the same Field of View
(FoV), which is invariably the case with distributed sensor
networks, GCI-based filters tend to perform poorly [38]. A
remedy for the PHD-GCI filter was proposed using cluster
analysis (CA-PHD-GCI) [39]. However, this approach requires
sharing FoV information among nodes and does not generate
object labels (identities), an important function of an MOT
algorithm [1]. Labelled GCI-based filters generate object labels
but tend to suffer from label inconsistency (i.e., individual
objects are assigned different labels by different nodes). While
there are efforts to reduce label inconsistency for sensors
without FoV limitations [14], [36], [37], the more practical
problems of reaching label consensus and reducing label
inconsistency in distributed fusion with limited FoV sensors
have not been addressed. In addition to GCI, which is based
on log-linear geometric averaging of probability densities,
the linear arithmetic average has also been explored in the
PHD [40]–[43], CPHD [44], and MB filter [45]. However, the
arithmetic averaging consensus for DMOT has not yet been
developed.

While current fusion algorithms based on multi-object den-
sities offer elegant conceptual solutions, these methods re-
quire intensive computing resources and high communication
bandwidth. Due to the combinatorial nature of MOT, each
multi-object distribution is characterised by a huge number
of parameters. The computing resources needed to calculate
these parameters at the nodes and the bandwidth needed for
communicating them to neighbouring nodes can be prohibitive
for real-time DMOT with increasing numbers of networked
nodes and objects [46]. The high computational time and
bandwidth requirements can be circumvented by considering
the distributed fusion of local multi-object state estimates
instead of multi-object densities. The track-to-track fusion and
association algorithms investigated in [47]–[54] assume no
false tracks nor missed objects, i.e., the number of local tracks
from any two nodes are the same [53]. This assumption is
not practical in problems involving a time-varying number of
objects and/or networks with limited FoV sensors. Further,
most of the discussed distributed fusion approaches require
feedback [55], i.e., the fusion outcome is used to update the
local multi-object densities.

In this work, we propose an efficient distributed fusion
algorithm for DMOT that accounts for practical limitations on
computing and communication resources as well as sensors
with different and limited FoVs without feedback (i.e., the
local multi-object densities are not modified). Our solution
fuses local multi-object state estimates, and thus, is agnostic
to local multi-object tracking techniques. It employs a novel
label consensus algorithm that reduces inconsistency in the
estimated labels caused by objects moving from one node’s
limited FoV to another. The optimal solution to this problem
is NP-hard (for more than 2 nodes). Considering the real-time

1GCI is also known as Chernoff fusion [28], [29], Exponential Mixture
Density [19], [30], [31] or Kullback-Leibler Average [12], [13], [32]
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Fig. 1. A distributed sensor network system with limited FoVs.

requirements in practical applications, we propose a tractable
sub-optimal fusion solution that reduces label inconsistency.
This strategy incurs far less computation time and bandwidth
than multi-object filtering density-based solutions. It also
achieves better tracking accuracy by considering the tracking
errors over several scans using the Optimal Sub-Pattern As-
signment (OSPA) metric with OSPA track-to-track distance or
OSPA(2) metric [56]–[58]. We also formalise the label con-
sistency concept and derive a sufficient condition to achieve
label consistency by exploiting the metric properties of the
OSPA(2). To validate our proposed method’s effectiveness, we
benchmark its accuracy and fusing time against state-of-the-art
GCI-based solutions for MOT in a series of numerical experi-
ments. We also release source code for our fusion algorithm to
foster the development of DMOT methods (see https://github.
com/AdelaideAuto-IDLab/Distributed-limitedFoV-MOT).

The paper is organised as follows. We define the problem
and provide background on metrics in Section II. Section
III presents our proposed fusion method. Section IV details
numerical experiments, results and comparisons with GCI-
based methods. Section V discusses concluding remarks.

II. BACKGROUND

This section provides the necessary background on dis-
tributed sensor networks and multi-object error metrics.

A. Distributed sensor network description

Fig. 1 depicts a distributed heterogeneous network described
by an undirected graph G = (N ,A), where N is the set
of nodes and A ∈ N × N is the set of arcs representing
connections among nodes. An arc (a, b) ∈ A means that node
a can receive data from node b and vice-versa. We denote
by N (a) , {b ∈ N : b 6= a and (a, b) ∈ A} the set of
neighbours of node a from which data can be obtained. Each
node is typically assigned with a unique ID. The set of all
such IDs forms an ordered set (e.g., integers), and is assumed
to be known by all the nodes.

Consider the task of monitoring a large area using the
network of Fig. 1 to detect and track an unknown and time-
varying number of mobile objects. We assume that each node
is equipped with a local computing unit capable of computing
local multi-object state estimates, as well as a transceiver
for communicating reliably with their neighbours through a
limited range-and-bandwidth communication channel. In this
context, each node can communicate its local multi-object state
estimates to other nodes directly or indirectly using a typical

https://github.com/AdelaideAuto-IDLab/Distributed-limitedFoV-MOT
https://github.com/AdelaideAuto-IDLab/Distributed-limitedFoV-MOT
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TABLE I
LIST OF VARIABLES/PARAMETERS

Symbol Variable/Parameter
N set of nodes
A set of arcs among nodes
N (a) set of neighbours of nodes a
X single-object state space
L label space
T track space
K discrete-time space
I = L×N global label space
x = (x, `) labelled state
X ⊂ X× L labelled multi-object state
L(X) ⊂ L set of labels of X
t = (t, `) labelled track
t̄ labelled track estimate after fusion
D(t) ⊆ K set of time instances that t exists
T ⊂ T× L set of labelled tracks
T (T) ⊂ T set of unlabelled tracks of T
X(a) ⊂ X× I set of globally labelled state estimates of node a
L(a) ⊂ I set of global labels of node a
T(a) ⊂ T× I set of globally labelled tracks of node a
X(con) ⊂ X× I set of consensed globally labelled state estimates

ad-hoc network or mesh network, for example, using an IEEE
802.16 standard. Each node is equipped with a limited field-of-
view (FoV) sensor subjected to false alarms and misdetections.
The network of interest has no central fusion node, and its
nodes operate without knowledge of the network topology.

At time k, an existing object is represented by a labelled
state xk = (xk, `k), where xk ∈ X is its state vector, and
`k ∈ L is a unique label consisting of the time of birth and
an index to distinguish objects born at the same time. The
set Xk ⊂ X× L of labelled states of existing objects (with
distinct labels) is called the labelled multi-object state (the set
Xk ⊂ X of states of existing objects is called the multi-object
state). We use the notation |X| for the cardinality of a set X ,
and L(X) = {L(x) : x ∈ X} for the set of labels of a multi-
object state X, where L : X × L → L is the label projection
defined by L((x, `)) = `.

Definition 1. Given a (discrete) time window K , {1, . . . ,K}
from start time 1 to end time K of the scenario, the track space
T is the space of all functions t : K→ X. Any element t ∈ T
is called a track, and the ordered pair t = (t, `) ∈ T× L is
called a labelled track.

The set D(t) ⊆ K of time instances that the track t = (t, `)
exists is the domain D(t) of t, and the labelled state vector
at time k ∈ D(t) is given by xk = (t(k), `). We also use
the same notation for the label projection L((t, `)) = `, and
L(T) = {L(t) : t ∈ T}, for T ⊂ T× L. Further, let T :
T × L → T be the track projection defined by T ((t, `)) = t
and T (T) = {T (t) : t ∈ T}.

Two remarks are in order. First, the definition of labelled
tracks meets the MOT requirement that tracks have labels
(or identities) [1]. In practice, labels are important for identi-
fying/referencing tracks; for example, given multiple tracks
on display, it would be impractical for a human user to
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Fig. 2. A set of two fragmented tracks t and u.

communicate with other users about a track by specifying
every estimated position of its trajectory. Second, the set
D(t) of instances that track t exists need not be consecutive
(see Fig. 2), and hence encompasses the so-called fragmented
tracks generated by many MOT algorithms. A fragmented
track arises when the MOT algorithm declares it non-existent
(possibly due to misdetections) in between instances where
it (is declared to) exist, as illustrated in Fig. 2. When D(t)

consists of consecutive instances, track t is called a trajectory.
Given a finite set T ⊂ T× L of labelled tracks with

distinct labels, the labelled multi-object state at time k ∈ K
is given by Xk = ∪(t,`)∈T{(t(k), `)}. Note that the history
X1:K , X1, ...,XK of labelled multi-object states completely
determines the set T, and hence we use the notation X1:K to
denote the set of labelled tracks on the interval K. We denote
the restriction of the track t, labelled track t, and set of labelled
tracks X1:K (or T) on the window {j : k} ⊂ K, by tj:k ,
tj:k, and Xj:k (or Tj:k). Hereon, the discussions in this paper
only concern the time window {j : k}, hence, for notational
compactness, we drop the subscript j : k when no confusion
arises, e.g., T , Tj:k.

Instead of seeking consensus amongst local multi-object
densities as pursued in many of the latest works [14], [39],
we are interested in reaching consensus amongst local multi-
object state estimates from the set N of nodes. At time
k, each local node a communicates a message which is an
ordered pair (a,Xk) comprising of the node’s identity a
and the local labelled multi-object state estimate Xk. Let
I = L × N be the global label space of the network,
wherein each global label is unique across the network. Let
X

(a)
k = {(x, (`, a)) : (x, `) ∈ Xk} ⊂ X × I be the

globally labelled multi-object state estimate of node a at time
k generated from the communicated message (a,Xk), and
L

(a)
k = L(X

(a)
k ) = {` , (`, a) : ` ∈ L(Xk)} ⊂ I be

its corresponding set of global labels. The receiving node
(e.g., b ∈ N (a)) stores X

(a)
k in its own memory to form a

set of globally labelled tracks X(a) (or T(a) ⊂ T × I) from
node a. Given the sets of globally labelled track estimates
{T(a)}a∈N , our objective is to compute a consensed globally
labelled multi-object state estimate Xcon

k ⊂ X× I by reaching
a consensus on the latest labelled multi-object state estimates
{X(a)

k }a∈N in terms of kinematics and labels. Moreover, we
seek an efficient algorithm that is scalable with respect to (wrt)
network size. A list of symbols is provided in Table I.

Our solution is based on minimising the overall dissimilarity
of tracks between sensor nodes. We employ a metric to



4 PREPRINT: IEEE TRANS. SIGNAL PROCESSING, VOL. 69, PP. 5329-5344, 2021.

measure such dissimilarities. Thus, in the next subsection,
we revisit the metric property and a widely used metric in
evaluating the tracking performance of MOT algorithms.

B. Multi-object metrics

A function d : S × S → [0,∞) is called a metric or a
distance function on the space S if it meets the following
conditions:

1) d(x, y) = 0 if and only if x = y (identity),
2) d(x, y) = d(y, x) (symmetry),
3) d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality).

We are interested in distances between two finite subsets
X = {x(1), . . . , x(m)} and Y = {y(1), . . . , y(n)} of a space
equipped with a metric d, referred to as the base-distance
(between the elements of X and Y ). An example of particular
relevance to this work is the Optimal Sub-Pattern Assignment
(OSPA) metric.

Let d(c)(x, y) , min(c, d(x, y)), and Πn be the set of all
permutations of {1, 2, ..., n}. The OSPA metric of (integer)
order p ≥ 1 and cut-off c ∈ (0,∞) is defined as [59]:

d
(p,c)
O (X,Y ) (1)

=

(
1

n

(
min
π∈Πn

m∑
i=1

d(c)(x(i), y(π(i)))p + cp(n−m)

))1/p

,

if m ≤ n, and d
(p,c)
O (X,Y ) , d

(p,c)
O (Y,X), if m > n, in

addition, d(p,c)
O (X,Y ) = c if one of the argument is empty,

and d
(p,c)
O (∅, ∅) = 0. The two adjustable parameters p, and

c, are interpreted as the outlier and cardinality sensitivities,
respectively. The OSPA metric can be interpreted as the best-
case localisation and cardinality error per object.

Given a meaningful base-distance d(c)(·, ·) between two
tracks, the OSPA metric provides meaningful distances be-
tween two finite subsets of tracks. One such base distance
is the time-averaged OSPA distance between the states of two
tracks over time instances when at least one of the tracks exists
[58]. Specifically, for any t, u ∈ T, the OSPA track-to-track
distance is defined as

d̃(c)(t, u) =
∑

k∈D(t)∪D(u)

d
(c)
O ({t(k)}, {u(k)})
|D(t) ∪ D(u)|

(2)

if D(t) ∪ D(u) 6= ∅, and d̃(c)(t, u) = 0, if D(t) ∪ D(u) = ∅,
where d

(c)
O ({t(k)}, {u(k)}) denotes the OSPA distance, and

since the arguments are only sets of at most one element, the
parameter p no longer comes into play. For example, the OSPA
track-to-track distance between the tracks t and u in Fig. 2 is

d̃(c)(t, u) =
(

7c+ d
(c)
O

(
{t(k − 4)}, {u(k − 4)}

))
/8.

The OSPA metric with OSPA track-to-track distance in (2),
called OSPA-on-OSPA or OSPA(2), provides a natural distance
between two sets of tracks. This distance can be interpreted as
the time-averaged per-track error and demonstrates meaningful
behaviour on various MOT scenarios. Errors in localisation,
cardinality, track fragmentation and track identity switching

all yield intended increases in the OSPA(2) error. The higher
the frequency of track fragmentation and identity switches, the
higher the OSPA(2) error. A dropped track that later regained
with the same identity yields a smaller increase in OSPA(2)

error than if it were regained with a different identity [58].

III. FUSION USING TRACK CONSENSUS

This section presents a novel algorithm for fusing the
latest local labelled multi-object state estimates among the
distributed network of sensor nodes. Our innovation is based
on the dissimilarity of tracks between nodes over multiple
scans (i.e., time window) instead of relying on the multi-
object densities at a single scan as in previous works. Fusing
multi-object state estimates instead of multi-object densities
significantly reduces the processing time and bandwidth.
Moreover, the proposed solution applies to non-overlapping
or partially overlapping limited FoVs of sensor nodes and
improves tracking accuracy and cardinality estimations (or
detectability of objects).

We first consider the problem of measuring the dissimilarity
between tracks. For this purpose, we define optimal track
matching via the OSPA track-to-track distance. Based on the
notion of optimal track matching, we formalise the concept of
label consistency and derive a sufficient condition to achieve
it. We then develop a novel algorithm for track consensus by
i) formulating a method for achieving kinematic consensus
between track estimates made by two nodes (Section III-C);
ii) extending this to a pair-wise fusion algorithm for kinematic
consensus when the number of nodes is greater than two
(Section III-D); and iii) developing a label consensus algorithm
to achieve label consistency across the distributed network of
nodes (Section III-E).

A. Optimal track matching

Consider two nodes a, b ∈ N . Without loss of generality,
suppose that fusion is performed at node a. At time k, the
aim is to compute a consensed labelled multi-object state
estimate X

(a,con)
k at node a from X

(a)
k and X

(b)
k . Since X

(a,con)
k

is computed from the latest local labelled multi-object state
estimates, previously terminated tracks have no influence, only
tracks declared to exist at k are considered. With a slight abuse
of notation, let T(a)

k = {t ∈ T(a) : L(t) ∈ L(X
(a)
k )} be the

set of live tracks at k, as declared by node a, truncated on the
window [j : k], and likewise for T

(b)
k = {t ∈ T(b) : L(t) ∈

L(X
(b)
k )}. For notational compactness, we use the shorthand

a(m) = T (a(m)), b(m) = T (b(m)), and u(m) = T (u(m)).

Definition 2. Given two sets of tracks T
(a)
k =

{a(1), . . . ,a(|T(a)
k |)} and T

(b)
k = {b(1), . . . ,b(|T(b)

k |)}, assum-
ing that |T(a)

k | ≤ |T
(b)
k |. We define the optimal matching as

the pairing of elements between the two sets that yields the
OSPA(2) distance d(1,c)

O (T (T
(a)
k ), T (T

(b)
k )) i.e.,

π∗ = arg min
π∈Π

|T(b)
k
|

|T(a)
k |∑

m=1

d̃(c)(a(m), b(π(m))), (3)
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Here, π∗(m) = n means track a(m) ∈ T
(a)
k is matched to

track b(n) ∈ T
(b)
k .

The optimal assignment problem can be solved using the
Hungarian algorithm [60], [61] with O(|T(b)

k |4) complexity,
or using efficient algorithms in [62]–[64] with O(|T(b)

k |3)
complexity.

Remark 1. The processing time of computing the optimal
assignment in (3) is considerably shorter than that of LM-
GCI in [14] where each node runs an LMB filter. The reason
is that for the LMB filter, the multi-object state estimate is
extracted from the LMB density for any label with existence
probabilities higher than a predefined threshold (typically
0.5). Thus, the number of tracks used in (3) is substantially
smaller than the number of LMB components used in LM-
GCI. Additionally, for optimal matching, we need to compute
the distance between two tracks (for our method) or two LMB
components (for LM-GCI). The computational complexity of
computing OSPA(2) distance between two tracks is consider-
ably smaller than the computing distance (GCI-divergence)
between two LMB components wherein a Gaussian mixture
characterises the spatial density of each component.

B. Label consistency and performance bound

In this subsection, we formalise the concept of label con-
sistency for the consensus of labelled tracks. Note that while
the term label consistency/inconsistency has been used in the
context of DMOT in [36], there is no formal definition.

Definition 3. Let u(1), . . . ,u(N) ∈ T × I be the true
trajectories of N distinct objects. Let a(1), . . . ,a(N) be their
corresponding track estimates at node a, and b(1), . . . ,b(N)

be their corresponding track estimates at node b. Then, we say
that label consistency is achievable when the optimal matching
π∗ between these sets of track estimates satisfies

π∗(m) = m, ∀m ∈ {1, . . . , N}. (4)

Moreover, suppose that for each m ∈ {1, . . . , N} the tracks
a(m) and b(m) are assigned new labels, resulting in tracks
ā(m) and b̄(m). Then, we say label consistency is achieved if

L(ā(m)) = L(b̄(m)), ∀m ∈ {1, . . . , N}. (5)

In essence, label consistency is achieved if the same object
is assigned the same global label by two nodes. Otherwise,
we have label inconsistency.

Remark 2. Definition 3 can be easily extended to more
than two nodes. Suppose that t̄(1), . . . , t̄(|N |) ∈ T× I are the
globally labelled track estimates of a true trajectory u. Then
label consistency is achieved if

L(t̄(m)) = L(t̄(n)), ∀m,n ∈ {1, . . . , |N |}. (6)

The following result provides the conditions to achieve label
consistency (see Appendix A for proofs).

Proposition 1. Consider the trajectories u(1), . . . ,u(N) of
N ≤ min(|T(a)

k |, |T
(b)
k |) distinct objects where T

(a)
k and

T
(b)
k are the sets of live tracks at time k at node a and

node b, respectively. Let us denote their corresponding la-
belled track estimates at nodes a and b, by a(1), . . . ,a(N)

and b(1), . . . ,b(N). Suppose that their track-to-track errors
d̃(c)(a(m), u(m)), d̃(c)(u(m), b(m)) at nodes a and b, are
bounded by E for all m ∈ {1, . . . , N}, and that:

d̃(c)(a(m), b(n)) = c ∀m > N,∀n ∈ {1, . . . , |T(b)
k |},

d̃(c)(a(m), b(n)) = c ∀m ∈ {1, . . . , |T(a)
k |},∀n > N.

(7)

Then, to achieve label consistency for these N distinct objects,
we need

d̃(c)(u(m), u(n)) > 4E ∀m,n ∈ {1, . . . , N},m 6= n. (8)

For a given upper bound on the track-to-track error, the
above result provides a lower bound on the separation of
the true trajectories required to achieve label consistency.
A conservative track-to-track error bound can be determined
from the kinematic error and the frequency of misses or the
empirical existence probability.

Definition 4. The empirical existence probability of a track t
over the time interval {j : k} is defined as

PX(t) =
|D(t)|

k − j + 1
, (9)

where D(t) ⊆ {j : k} is the domain of track t.

Proposition 2. Let Pmin
X be minimum empirical existence

probabilities of all tracks at nodes a and b, i.e.,

Pmin
X = min

t∈T(a)
k ∪T

(b)
k

PX(T (t)), (10)

Suppose the single-scan estimation errors at nodes a and b are
bounded as follows:

d
(c)
O ({a(m)(i)}, {u(m)(i)}) =

{
c i /∈ D(a(m))

d(c)(a(m)(i), u(m)(i)) ≤ ε i ∈ D(a(m))
,

d
(c)
O ({b(m)(i)}, {u(m)(i)}) =

{
c i /∈ D(b(m))

d(c)(b(m)(i), u(m)(i)) ≤ ε i ∈ D(b(m))
,

∀m ∈ {1, . . . , N}.

Then the track-to-track error is bounded by

εPmin
X + c(1− Pmin

X ). (11)

Remark 3. If the window [j : k] is long enough, and a “good”
multi-object tracker (e.g., MHT [11], GLMB [25], [26] or
multi-scan GLMB [27]) is used, then it is possible to have
Pmin
X ≥ PD where PD is the detection probability. Thus:

εPmin
X + c(1− Pmin

X ) ≤ εPD + c(1− PD), (12)

and the condition for label consistency is

d̃(c)(u(m), u(n)) > 4
[
εPD + c(1− PD)

]
,

∀m,n ∈ {1, . . . , N},m 6= n. (13)

Intuitively, (13) suggests that to achieve label consistency it
is necessary that i) the object true trajectories are reasonably
well-separated; ii) the detection probability PD is relatively
high.
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C. Kinematic consensus for two nodes

Track consensus involves kinematic consensus and label
consensus. In this subsection, we develop an algorithm to com-
pute the kinematic consensus between track estimates from
two nodes. This kinematic consensus algorithm is extended
to multiple nodes in Section III-D, while the label consensus
algorithm is discussed in Section III-E.

Since each node is equipped with a limited FoV sensor,
only track estimates within the overlapped FoV of two sensors
(observed2 by both nodes’ FoVs) should be matched and
fused to enhance tracking accuracy. Further, the unmatched
tracks (outside the overlapped FoV of two sensors) should
be retained to improve detectability. Thus, the set of tracks
at each node can be divided into three subsets: i) matched
tracks, ii) unmatched and retained tracks, iii) unmatched and
discarded tracks. However, for distributed sensor networks, the
sensor FoV information of other nodes is usually unknown,
and we rely on the separation between two-track estimates to
determine if they are matched or not. For all pairs (m,n)
such that π∗(m) = n, only pairs with associated costs
Cm,n = d̃(c)(a(m), b(n)) less than c are considered matched.
Essentially, this implies that both matched tracks must exist
together for at least one instance (e.g., at time k − 4 as in
Fig. 2) or are not too distant in accordance with the cut-off
distance c.

m ∈ Q(a)
k ⊆ {1, . . . , |T(a)

k |},
n ∈ Q(b)

k ⊆ {1, . . . , |T
(b)
k |}, (14)

subject to π∗(m) = n,Cm,n < c.

The steps for determining matched pairs are given in Algo-
rithm B.1 (see Appendix B).

For the unmatched tracks, some of these can be false
tracks and should be discarded. Thus, we propose that only
unmatched tracks with lengths higher than a predefined track
length Clen are retained. Similar to the traditional thresholding
method in extracting raw measurements, a small track length
Clen helps to initiate new objects faster albeit with more
false-positives and vice versa [65]. Intuitively, Clen delays the
confirmation of a new object by the track consensus algorithm
for at least Clen steps, i.e., the observed track must have a track
length greater than or equal to Clen to be confirmed as a new
birth object. As a result, the consensed labelled multi-object
state estimate comprises of two components: i) the matched
and fused labelled state estimates, ii) the unmatched and
retained labelled state estimates of two nodes. The steps for
fusing two nodes are described in Algorithm 1, and elaborated
on below:

Step 1) Fuse matched labelled state estimates: We compute3

the set X̄(a)
k of matched labelled state estimates at node a by

2When we say track t is observed at node a means that node a declares
track t exist.

3We implement a naive solution here such that the fused label is the label of
the node performing the fusion steps while further improvements to achieve
label consensus are discussed in Section III-E. Here, we employ a simple
weighted average of the local estimates,

Algorithm 1 FuseTwoNodes
Input: T

(a)
k ; T

(b)
k ; Ξ

(a,b)
1:k−1; L

(a)
1:k−1; L

(b)
1:k−1; Clen;

Output: X
(a,con)
k ; Ξ

(a,b)
1:k ; L

(a)
1:k; L

(b)
1:k;

1: L
(a)
1:k = L

(a)
1:k−1 ∪

(
L(T

(a)
k ) \ L(a)

1:k−1

)
;

2: L
(b)
1:k = L

(b)
1:k−1 ∪

(
L(T

(b)
k ) \ L(b)

1:k−1

)
;

3: Qk := DetermineMatchedPairs(T
(a)
k ,T

(b)
k ));

4: Ξ(a,b)
1:k := UpdateMatchedHistory(Ξ

(a,b)
1:k−1, L

(a)
1:k, L

(b)
1:k, Qk);

5: Compute X̄
(a)
k via (15) ; X

(a,ret)
k and X

(b,ret)
k via (16) ;

6: X
(a,con)
k := X̄

(a)
k ∪X

(a,ret)
k ∪X

(b,ret)
k ;

fusing matched labelled state estimates, i.e.,

X̄
(a)
k =

{
(x, `(m)) : x = w(a)a(m)(k) + w(b)b(n)(k), (m,n) ∈ Qk

}
,

(15)

where w(a) and w(b) be the fusing weights of two nodes
with w(a) + w(b) = 1 and w(a), w(b) > 0 (See (21) later
in Section IV for how the weights are selected). Notably, we
also maintain an |L(a)

1:k|× |L
(b)
1:k| matched history matrix Ξ(a,b)

1:k

(line 4 in Algorithm 1) whose elements are the number of
instances that track i(m) ∈ {1, . . . , |L(a)

1:k|} is matched with
track i(n) ∈ {1, . . . , |L(b)

1:k|}. Here, L(a)
1:k is the label space up

to time k at node a (likewise for L(b)
1:k at node b). We describe

in Algorithm B.2 in Appendix B the method for updating the
matched history matrix.
Step 2) Retain unmatched labelled state estimates: We retain
the set X(a,ret)

k of unmatched labelled state estimates at node a
(likewise for X(b,ret)

k at node b) whose lengths exceed a given
Clen, i.e.,

X
(a,ret)
k =

{
a(m)(k) : m ∈ {1, . . . , |T(a)

k |} \Q
(a)
k , |D(a(m))| ≥ Clen

}
.

(16)

Further, any unmatched tracks with lengths less than Clen are
discarded.
3) Compute consensed labelled state estimates: We compute
the set X(a,con)

k of consensed labelled state estimates at node
a by combining two components: i) the matched and fused
labelled state estimates, ii) the unmatched and retained labelled
state estimates of two nodes, i.e.,

X
(a,con)
k = X̄

(a)
k ∪X

(a,ret)
k ∪X

(b,ret)
k . (17)

Remark 4. The consensed labelled multi-object state estimate
X

(a,con)
k does not play a role in optimal matching at the next

time step and is used for reporting purposes only. The local
multi-object state estimate X

(a)
k+1 at the next time step k+1 is

independent of X
(a,con)
k . The optimal matching at k + 1 only

depends on sets of live tracks T
(a)
k+1 and T

(b)
k+1, not on the

consensed multi-object state estimate X
(a,con)
k .

D. Kinematic consensus for multiple nodes

The previous subsections presented a new kinematic consen-
sus algorithm for fusing multi-object state estimates between
two nodes. We now extend the algorithm to more than two
nodes. A direct extension results in an |N |-dimensional opti-
mal assignment for the track matching, an NP-hard problem. A
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widely used sub-optimal strategy to circumvent this intractable
problem is to perform pair-wise matching sequentially [12],
[14], [32]. Based on the proposed network architecture in Sec-
tion II-A, the kinematic consensus is realised in Algorithm 2,
called TC-OSPA(2). Algorithm 2 consists of two steps:
Step 1) Fuse each neighbour node with current node: Each
neighbour labelled multi-object state estimate is fused to the
labelled multi-object state estimate of the node of interest to
ensure that only unmatched labelled state estimates with the
track lengths greater than or equal to Clen are retained.
Step 2) Fuse the consensed labelled state estimates sequen-
tially: The consensed labelled state estimates of neighbouring
nodes and the nodes of interest are combined sequentially
without the track length constraint (i.e., Clen = 1) to retain
all unmatched tracks because the label consensus has not been
reached.

Algorithm 2 FuseMultiNodes
Input: {T(a)

k }a∈N ; {Ξ(a,b)
1:k−1}a,b∈N ; {L(a)

1:k−1}a∈N ;

Output: {X(a,con)
k }a∈N ; {Ξ(a,b)

1:k }a,b∈N ; {L(a)
1:k}a∈N ;

1: for a = 1 : |N | do
2: B := {1 : |N |} \ {a};
3: Xtemp = []; . Initialise a temporarily consensed

labelled multi-object state estimate.
4: for i = 1 : |B| do

. Step 1: fuse each neighbour node with current node.
5: b := B(i);

6: [X
(i)
temp, Ξ

(a,b)
1:k ,L

(a)
1:k,L

(b)
1:k] :=

7: FuseTwoNodes(T
(a)
k ,T

(b)
k , Ξ

(a,b)
1:k−1,L

(a)
1:k−1,L

(b)
1:k−1, Clen);

8: end for
9: X

(a,con)
k := X

(1)
temp;

10: if |B| > 1 then
. Step 2: fuse the consensed labelled state estimates sequentially.

11: for i = 2 : |B| do
12: X

(a,con)
k :=FuseTwoNodes(X

(a,con)
k ,X

(i)
temp, [], [], [], 1);

13: end for
14: end if
15: Lcon

a,k := UpdateLabels(L(X
(a,con)
k ); {Ξ(a,b)

1:k }a,b∈N ; {L(a)
1:k}a∈N );

16: end for

Algorithm 2 (TC-OSPA(2)) can be implemented in real-
time given the significantly low message sizes realised by
transmitting labelled multi-object state estimates compared
to transmitting labelled multi-object densities. In particular,
suppose that |Tmax| is the maximum number of objects seen
by the network, i.e., |Tmax| = max

(
|T(1)|, . . . , |T(|N |)|

)
,

then the order of magnitude of data that needs to be shared is
upper bounded by4

|N ||Tmax|. (18)

For example, if |N | = 20 nodes, |Tmax| = 100 objects,
and each labelled state estimate has 6 dimensions (4 for 2D
environments of kinematic state and 2 for the local label’s
dimension), and each dimension is represented by an 8-byte
floating-point value. The maximum amount of data that needs
to be shared by a node at one time is 93.75 KB, which
is reasonably low to track a large number of objects using
20 distributed nodes. Notably, our method does not require

4The upper bound is only reached in the case that all nodes observe all the
objects. In reality, because of limited FoV sensors, this upper bound will not
be reached in most cases.

transmitting all the trajectories because the state estimates
from other nodes can be stored in each local node. Even if
the trajectories need to be sent, for instance, due to limited
memory at each local node, the proposed method only needs to
transmit truncated trajectories (e.g., 10 scans). Consequently,
the bandwidth needed is much smaller than sending a multi-
object density and is proportional to the number of objects.
Further, the computational complexity of Algorithm 2 at each
local node is O(|N ||Tmax|4d) where d is the dimension of a
single-object state. Thus, the computational complexity only
increases linearly with respect to the number of nodes. See
numerical experiments in Sec. IV for fusing time.

Remark 5. Since our approach is agnostic to local multi-
object tracking techniques, we do not assume that the nodes
also provide covariances of their estimates. Nonetheless, if
the local trackers can provide covariances, then our approach
is also applicable by fusing the means and covariances. In
particular, we can: i) compute the distance in (2) using the
Mahalanobis distance between two Gaussian distributions;
ii) compute the fused estimate in (15) and its covariance
using methods such as the optimal fusion method for two-
sensors [66] or GCI for multiple sensors.

E. Label consensus for multiple objects

The previous subsections address multiple limited FoVs
kinematic consensus. However, MOT concerns not only the
object’s positions (kinematic) but also the object’s identities
(labels). In this subsection, we present our label consensus
solution that reduces the occurrences of label inconsistency.
During the fusion steps, the unmatched and retained labelled
state estimates are included in the consensed labelled multi-
object state estimates (see (17)). Hence, care must be taken
to ensure mismatched labels between nodes are resolved
to achieve label consensus, as illustrated in the following
example.

Example 1. Consider using a two-node distributed sensor
network to track a mobile object that follows a constant
velocity model over a [−500, 1500]m ×[0, 1000]m area. The
locations of the two nodes are [0, 400]T m and [0, 800]T m,
respectively. Each node runs an LMB filter locally, and its sen-
sor can only detect objects within its relative angle [−60◦, 60◦]
with detection probability PD = 0.98 and detection range
rD = 800 m (see Fig. 3). After the kinematic consensus steps,
we have the two following label inconsistency problems:

1) Label inconsistency of the unmatched and retained labelled
state estimates. Fig. 3a depicts the consensed labelled state
estimates at node 1. Although the kinematic fusion success-
fully helps node 1 track the object, a track fragmentation still
occurs even when it moves out of node 1’s FoV. This happens
because it is no longer detected by node 1, and the network
relies on detection information from node 2 (including node
2’s label) to track it. Since node 2 has a different label (in
red) to the one observed by node 1 (in blue), the consensed
labelled state estimates yield two different labels for the same
object.
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Fig. 3. Example 1 — two nodes with limited FoVs tasked with tracking objects. a) Consensed labelled state estimates at node 1 before reaching label
consensus; b) Consensed labelled state estimates at node 2 before reaching label consensus; c) Consensed labelled state estimates at node 1 (likewise for node
2) after reaching label consensus. Here: ‘◦’ is the location of the object’s birth; ‘�’ is the location of the object’s death. Colour coding represents labels of
the objects.

2) Label inconsistency of the matched labelled state esti-
mates. Fig. 3b depicts the consensed labelled state estimates
at node 2. Initially, the object is not detected by node 2; hence,
the network relies on the information from node 1 (including
node 1’s label in blue) to track it. When the object moves into
node 2’s FoV, node 2 assigns it a new label in red. During the
fusion steps (see (15)), the object is assigned the red label of
node 2 (since the fusion is performed at node 2). As a result,
the consensed labelled state estimates have different labels for
the same object.

In the following, we present a label consensus solution
to reduce label inconsistency. The main idea is to construct
a graph that represents connections among labels based on
the match history matrices Ξ(a,b)

1:k whose (m,n) entry is the
number of instances the mth track in node a’s track-list is
matched with the nth track in node b’s track-list. In particular,
let G = (V,E) be a graph, where:
• the set V of labels is the set of vertices of the graph;
• E is the set of edges representing matches between labels.

Since label consistency requires the same object to have the
same label across all nodes of the network (Remark 2), all of
the connected vertices should be assigned the same label. For
this so-called consensed label, we propose to use the least label
of connected vertices according to a lexicographical order of
time of birth and unique node ID :

` = ((k, i), a) < `′ = ((k′, i′), b)

⇔ (k = k′) and (a < b) or (k < k′). (19)

The proposed label consensus is provided in Algorithm B.3 in
Appendix B, which is used in line 15 of Algorithm 2. Fig. 3c
depicts the consensed labelled multi-object state estimate at
node 1 after label consensus is achieved. Observe that label
inconsistency is eliminated.

IV. NUMERICAL EXPERIMENTS

In this section, we apply the proposed TC-OSPA(2) fusion
method to investigate and compare with other fusion strategies
in three distributed sensor network settings of increasing
complexity. A 2-dimensional search area is adopted for these
three scenarios to demonstrate the effectiveness of our method.
Each detected object with kinematic state x = [px, ṗx, py, ṗy]T

results in an observation z of noisy xy-coordinate positions,
given by: z =

[
px, py]T + v. Here, v ∼ N(0, R) is a 2 × 1

zero-mean Gaussian process noise with R = diag(σ2
x, σ

2
y)

where σx = σy = 10 m. Each object follows a constant
velocity model given by xk = FCV xk−1 + qCVk−1. Here,
FCV = [1, T0; 0, T0]⊗I2, T0 is the sampling interval (T0 = 1 s
for our experiments), ⊗ denotes for the Kronecker tensor
product; I2 is the 2 × 2 identity matrix; qCVk−1 ∼ N(0, QCV )
is a 4×1 zero-mean Gaussian process noise, with co-variance
QCV = σ2

CV [T 3
0 /3, T

2
0 /2;T 2

0 /2, T0] ⊗ I2 where σCV =
5 m/s2. Each object has survival probability PS = 0.98. Clutter
follows a Poisson model with an average of 10 clutters per
scan. We use OSPA and OSPA(2) as well as fusing time to
measure performance. For OSPA and OSPA(2), we set cut-off
c = 100 m, order p = 1. The OSPA(2) distance at time k
is calculated over a 10-scan window ending at k. The fusing
time reported is the average execution time for the fusion steps
over 100 MC runs—notably, this excludes the execution of the
filtering algorithm.

For a fair comparison with LM-GCI in [14], we use an
LMB filter at each local node, although our approach can
be used with different filters such as MHT or GLMB since
our method is agnostic to the filters at each node. The LMB
filter is implemented with Gaussian mixtures using Gibbs sam-
pling [67] for a joint prediction and update step. The existence
threshold is set at 10−3, i.e., any Bernoulli component with
label ` and its existence probability r(`) < 10−3 is pruned. A
Bernoulli component with label ` with existence probability
r(`) > 0.5 is confirmed as an existing object, and its state
estimates are extracted from the corresponding state density.
Further, we implement the Adaptive Birth Procedure (ABP)
in [24]. In particular, the birth distribution πB,k+1 at time
k + 1 is a function of measurement sets Zk, i.e., πB,k+1 ={
r

(`)
B,k+1(z), p

(`)
B,k+1(x|z)

}|Zk|
l=1

, where

r
(`)
B,k+1(z) = min

(
rB,max,

1− rU,k(z)∑
ζ∈Zk

1− rU,k(ζ)
λB,k+1

)
.

Here, rU,k(z) is the probability that the measurement z is
associated with tracking hypotheses given by

rU,k(z) =
∑

Ik−1,ξ,Ik,θk

1θk(z)w(Ik−1,ξ)w(Ik−1,ξ,Ik,θk), (20)

where w(Ik−1,ξ)w(Ik−1,ξ,Ik,θk) is in [67, eq.14], λB,k+1 is the
expected number of births at time k + 1 and rB,max is the
maximum existence probability of a newly born object. In
three scenarios, we set λB,k+1 = 0.5 and rB,max = 0.03.
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For data fusion, since we do not focus on the weight
selection problem, the Metropolis weight [68] is implemented,
i.e., for each node a, b ∈ N ,

w(a,b) =

{
1

1+max(|N (a)|,|N (b)|) , a ∈ N , b ∈ N (a),

1−
∑
b∈N (a) w(a,b), a ∈ N , b = a.

(21)

We compare the proposed fusion method TC-OSPA(2), with
CA-PHD-GCI [39] and LM-GCI [14]. We also compare our
proposed approach with the OSPA metric replaced by the
Wasserstein metric, here on referred to as TC-WASS. The
Wasserstein metric of (integer) order p ≥ 1 is defined as [69]:

d
(p)
W (X,Y ) , min

C̄

( m∑
i=1

n∑
j=1

C̄i,jd(x(i), y(j))p
)1/p

(22)

where C̄ =
(
C̄i,j

)
denotes an m × n transportation matrix,

i.e., the entries C̄i,j are non-negative, each row sum to 1/m,
and each column sum to 1/n. The integer p determines the
sensitivity of the metric to outliers in the finite subsets X
and Y . Notably, the Wasserstein distance is undefined if one
of the finite subsets is empty. Consequently, unlike the OSPA
track-to-track distance in (2), the time-average (track-to-track)
Wasserstein distance between two tracks is undefined if one
track is fragmented (as shown in Fig. 2). One method to define
a Wasserstein track-to-track distance is to embed the time
information as a part of multi-object state: for any t, u ∈ T,
we form finite sets X̃(t) = {(t(k), αk) : k ∈ D(t)} and
X̃(u) = {(u(k), αk) : k ∈ D(u)} and define

d̃W (t, u) = d
(p)
W (X̃(t), X̃(u)), (23)

where α is a user-defined parameter to calibrate the influence
of time on the overall distance. In our experiments, we set
α = 20 m/s—the maximum velocity of all objects. Notably,
for the CA-PHD-GCI fusion strategy, the underlying PHD
filter does not report labels for multi-object state estimates;
hence, tracking performance—in terms of OSPA(2)—cannot
be assessed. Thus, we only report OSPA for CA-PHD-GCI
and use blue to represent estimated object locations without
labels in Fig. 4b and Fig. 6b.

A. Scenario 1 — two nodes with a small number of objects

In this setting, we investigate the simple problem of tracking
three mobile objects using two sensor nodes with limited FoV
sensors in a [−500, 1500] m × [0, 800] m area. The two nodes
are located at [0, 400]T m and [0, 800]T m, respectively. At
each node, the sensor can only detect objects within its relative
angle of [−50◦, 50◦] with PD = 0.98 and rD = 800 m. This
scenario’s duration is 80 s, with object 1 and object 2 staying
alive for the whole period, while object 3 is born at time
10 s and dies at time 60 s. The track consensus is performed
over 5 scans, with track length threshold Clen = 2, i.e., only
unmatched tracks with lengths exceeding 2 are retained. The
considered scenario setting is shown in Fig. 4a.

Fig. 4, Fig. 5 and Table II compare results across CA-PHD-
GCI, LM-GCI, TC-WASS, and TC-OSPA(2) fusion methods.
The results confirm that our proposed TC-OSPA(2) method can
accurately detect and track all three objects with consistent

TABLE II
SCENARIO 1 RESULTS COMPARISON OVER 100 MONTE CARLO RUNS

Strategies OSPA (m) OSPA(2) (m) Fusing time (s)
CA-PHD-GCI 46.6 - 0.383
LM-GCI 31.7 38.8 0.079
TC-WASS 19.6 29.7 0.013
TC-OSPA(2) 19.0 27.0 0.011

labels whilst consuming the shortest fusing time. Due to
the small number of objects, TC-WASS also attains a low
OSPA error; however, TC-WASS occasionally fails to assign
correct labels and results in a higher OSPA(2) error as seen
in Table II. In contrast, LM-GCI can only detect and track
objects accurately within a sensor’s own FoV. After the 30 s
duration mark, all three objects are within the intersection
of the two sensors’ FoVs, and we can observe Node 2 to
correctly track all three objects as illustrated in Fig. 5a and
5c. Further, although CA-PHD-GCI can estimate most of these
three objects, its accuracy based on the OSPA distance is the
poorest because the underlying PHD filter does not perform
as well as the LMB filter at each local node [70].

B. Scenario 2 — two nodes with a large number of objects

In this scenario, we consider a more challenging problem
using two limited-FoV sensor nodes to track a time-varying
and an unknown number of mobile objects in a [−500, 1800] m
× [−100, 1000] m surveillance area. The two nodes are located
at [300,−100]T m and [1000,−100]T m, respectively. Each
sensor can only detect objects within its limited FoV defined
by a relative angle of interval [−50◦, 50◦] with PD = 0.98
and detection range rD = 1000 m. This scenario’s duration is
80 s, with various birth and death events and a maximum
of 22 objects. The track consensus between two nodes is
performed over 5 scans, with track length threshold Clen = 2.
The considered scenario is illustrated in Fig. 6a.

Fig. 6b-d depict the consensed labelled multi-object state
estimates and the true trajectories at sensor node 2 of a
particular run for CA-PHD-GCI, LM-GCI, TC-WASS and TC-
OSPA(2), respectively. The results confirm that TC-OSPA(2)

successfully detects and tracks all objects without any label
inconsistency, regardless of whether objects are in the node’s
FoV or not. In contrast, LM-GCI can only detect and track
most of the objects within the node’s FoV. Although CA-PHD-
GCI can detect all objects, even those outside the node’s FoV,
CA-PHD-GCI demonstrates the worst estimation performance
as shown in Table III. Fig 7c shows the cardinality estimates;
the evidence therein further supports the above observation.
It is expected that LM-GCI fails to detect all of the objects
compared to CA-PHD-GCI, TC-WASS and TC-OSPA(2) since
only the latter three strategies are designed to cope with limited
FoV sensors.

Fig. 7a-d and Table III present the performance comparisons
among the four fusion strategies in terms of OSPA, OSPA(2)

and fusing time over 100 Monte Carlo runs. We can see that
TC-OSPA(2) outperforms other fusion strategies, including our
track consensus fusion strategy employed with the adaptation
of the Wasserstein metric (TC-WASS) by large margins whilst
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Fig. 4. Scenario 1 ground-truth and consensed labelled multi-object state estimates at sensor node 2: a) ground-truth; b) CA-PHD-GCI (unlabelled approach);
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Fig. 5. Comparison results for Scenario 1: a) OSPA distance; b) OSPA(2)

distance; c) Cardinality estimations; d) Fusing times.

TABLE III
SCENARIO 2 COMPARISON RESULTS OVER 100 MONTE CARLO RUNS

Strategies OSPA (m) OSPA(2) (m) Fusing time (s)
CA-PHD-GCI 51.5 - 1.095
LM-GCI 42.9 50.1 0.359
TC-WASS 28.6 45.6 0.078
TC-OSPA(2) 21.0 32.5 0.052

TABLE IV
PERFORMANCE COMPARISON FOR DIFFERENT PD VALUES OBTAINED

OVER 100 MONTE CARLO RUNS FOR EACH PD SETTING AND METHOD

PD
CA-

PHD-GCI
LM-
GCI

TC-
WASS

TC-
OSPA(2)

OSPA (m)
0.7 78.9 61.1 39.9 37.1
0.8 71.1 52.4 34.5 30.0
0.9 64.4 44.7 31.1 24.1

OSPA(2) (m)
0.7 - 67.4 55.7 49.3
0.8 - 59.6 51.8 42.4
0.9 - 52.3 48.3 35.9

requiring the shortest fusing time. The reason is that TC-
OSPA(2) minimises label inconsistency for limited FoV sensors
while fusing the most certain object state estimates within a
sensor’s FoV (local labelled multi-object state estimates) to
reach consensus in both position and label estimations.

Table IV further compares the performance of TC-OSPA(2)

with LM-GCI, CA-PHD-GCI, and TC-WASS under different
detection probability, PD, settings. It is expected that the
occurrences of label inconsistency will increase when PD
decreases. Consequently, the tracking accuracy decreases when
PD decreases, concurring with our observation in Remark 3.
Nevertheless, the results in Table IV show the proposed TC-
OSPA(2) approach to consistently outperform the other three
fusion strategies across the PD values.
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Fig. 6. Scenario 2 ground-truth and consensed labelled multi-object state
estimates at sensor node 2: a) ground-truth; b) CA-PHD-GCI (unlabelled
approach); c) LM-GCI; d) TC-WASS; e) TC-OSPA(2). Starting and stopping
positions are denoted by ◦ and �, respectively. Colour coding represents labels
of the objects. Although less apparent, several false tracks are visible in the
region of [500, 1000] m ×[200, 600] m in Fig. 6d when using TC-WASS.

C. Scenario 3 — a large number of nodes

To further demonstrate our proposed fusion method’s effec-
tiveness, we consider a scenario with 16 limited FoV sensor
nodes for tracking a time-varying and unknown number of
mobile objects in a [−1000, 1000] m × [−1000, 1000] m
surveillance area. These 16 nodes are positioned near the edge
of the area. Each sensor can only detect objects within its
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Fig. 7. Comparison results for Scenario 2: a) OSPA distance; b) OSPA(2)

distance; c) Cardinality estimations; d) Fusing times.
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limited FoV defined by a relative angle of interval [−25◦, 25◦]
with PD = 0.98 and detection range rD = 1000 m. This
scenario’s duration is 75 s with various birth, death events and
a maximum of 18 objects. Further, due to higher uncertainty,
the track consensus is performed over 10 scans (instead of
5 as in Scenario 2), with a track length threshold Clen = 4.
The scenario described is depicted in Fig. 8a. Notably, for
this scenario, we can only compare TC-OSPA(2) with TC-
WASS and LM-GCI since it is unclear how CA-PHD-GCI
can be implemented for more than two nodes. Additionally, we
implement MS-GLMB in [71] for this scenario (see Fig. 8b)
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Fig. 9. Scenario 3 — consensed labelled multi-object state estimates at sensor
node 7: a) LM-GCI; b) TC-WASS; c) TC-OSPA(2). Starting and stopping
positions are denoted by ◦ and �, respectively. Colour coding represents
objects’ labels.

as a lower bound (ideal case) on the estimation error, i.e. to
show how close/far of our proposed fusion method is from
the ideal case of centralised tracking when all of the sensors’
FoVs are known.

Fig. 9a-c depict the consensed labelled multi-object state
estimates and the ground-truth at node 7 for LM-GCI, TC-
WASS and TC-OSPA(2), respectively, for one particular ex-
ecution. Although LM-GCI detects a few objects outside of
node 7’s FoV, many objects are missed because LM-GCI is
not designed for partially overlapped sensor FoV situations.
In contrast, TC-WASS and TC-OSPA(2) employing our track
consensus-based fusion method can detect, track and assign
correct labels for most of the objects, regardless of the objects’
locations. The cardinality estimates further confirm the results
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Fig. 10. Comparison results at node 7 for Scenario 3: a) OSPA distance; b)
OSPA(2) distance; c) Cardinality estimations; d) Fusing times.

TABLE V
SCENARIO 3 COMPARISON RESULTS OVER 100 MONTE CARLO RUNS

Strategies OSPA (m) OSPA(2) (m) Fusing times (s)
LM-GCI 78.7 81.6 1.35
TC-WASS 30.2 54.4 0.62
TC-OSPA(2) 23.7 41.3 0.34
Ideal case
(centralised method)
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Fig. 11. TC-OSPA(2) tracking performance at sensor node 2 for Scenario 3
over 100 MC runs when the number of nodes is increased from 2 to 16 (i.e.,
the number of communications from peer nodes at node 2 is increased from
1 to 15) whilst the ground truth is maintained as shown in Fig. 8a.

plotted in Fig. 10c, which demonstrates that TC-OSPA(2) and
TC-WASS can detect and track all 18 objects in this scenario.
In comparison, LM-GCI can only detect up to 4 objects on
average, over 100 MC runs.

Fig. 10a-d provide detailed tracking performance com-
parisons, not easily visible in Fig. 9. The results further
demonstrate the robustness of TC-OSPA(2). It significantly
outperforms LM-GCI and TC-WASS across three performance
metrics: OSPA, OSPA(2) and fusing time. Table V summarises
performance comparison results confirming the effectiveness
of our proposed distributed fusion strategy. It also demon-
strates that the performances of our distributed fusion method
closely approach the performance of the centralised method.

Fig. 11 plots the overall tracking performance at sensor node
2 in Scenario 3 for TC-OSPA(2) as the number of nodes is
increased from 2 to 16 (i.e., the number of communications
from peer nodes at node 2 is increased from 1 to 15)

whilst maintaining the same ground truth as in Fig. 8a. The
results validate the scalability of our proposed fusion strategy,
wherein the fusing time increases linearly with respect to
the number of nodes, i.e., O(|N |). Even with 16 nodes, the
fusing time is relatively short, suitable for real-time tracking in
several applications. As expected, when the number of nodes
increases, the OSPA and OSPA(2) errors decrease since the
nodes can benefit from shared local labelled multi-object state
estimates of other nodes to complement their own limited
FoVs, thereby improve coverage area, and tracking accuracy.

V. CONCLUSION

A new scalable DMOT solution for multi-sensors with
limited FoV sensors has been proposed. Our solution consists
of a novel track consensus algorithm coupled with a label
consensus method based on the OSPA(2) metric. The better
efficiency and accuracy of the proposed DMOT solution are
due to the fusion of multi-object state estimates using track
consensus over several scans, whereas current solutions fuse
multi-object densities from a single scan. Experimental results
demonstrate improvements in both speed and accuracy over
current methods.

Importantly, our DMOT approach does not rely on any
specific tracking methodology but only requires that each
node provide a set of estimated tracks. Hence, it provides the
flexibility for different network nodes to run different MOT
algorithms, which is often the case in heterogeneous and ad-
hoc networks.

APPENDIX

A. Mathematical proofs

Proof of Proposition 1: For any m ∈ {1, . . . , N}, applying
triangle inequality, we have:

d̃(c)(a(m), b(m)) ≤ d̃(c)(a(m), u(m)) + d̃(c)(u(m), b(m)),

≤ 2E . (24)

Similarly, using the triangle inequality and the bound E , for
any n,m ∈ {1, . . . , N} and n 6= m, we have

d̃(c)(a(m), b(n)) ≥ d̃(c)(u(m), b(n))− d̃(c)(u(m), a(m)) (25)

≥ d̃(c)(u(m), b(n))− E ,
≥ d̃(c)(u(m), u(n))− 2E . (26)

Using (8) and d̃(c)(u(m), u(n)) > 4E , we have

d̃(c)(a(m), b(n)) > d̃(c)(a(m), b(m)). (27)

Using Definition 2 and (7), we have

π∗ = arg min
π∈Π

|T(b)
k
|

|T(a)
k |∑

m=1

d̃(c)(a(m), b(π(m))) (28)

= arg min
π∈Π

|T(b)
k
|

[ N∑
m=1

d̃(c)(a(m), b(π(m))) +
(
|T(a)

k | −N
)
c
]
.

(29)
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Since d̃(c)(a(m), b(π(m))) = c ∀π(m) > N according to (7)
and

(
|T(a)

k | −N
)
c is a constant, (29) is equivalent to

π∗ = arg min
π∈ΠN

J(π), (30)

where J(π) =
∑N
m=1 d̃

(c)(a(m), bπ(m)).
Let π̂ ∈ ΠN be an assignment function that satisfies (4) (i.e.,

π̂(m) = m ∀m ∈ {1, . . . , N}). According to Definition 3, if
π∗ satisfies (4), and we assign the same label to each matched
pair, then the N distinct objects have label consistency.

We now prove that π∗ = π̂ by using contradiction. Suppose
that π∗ 6= π̂. Then according to (30), J(π∗) < J(π̂). Thus,
∃m,n ∈ {1, . . . , N} and m 6= n such that π∗(m) = n and
d̃(c)(a(m), b(n)) ≤ d̃(c)(a(m), b(m)), otherwise we would have
J(π∗) > J(π̂). However, d̃(c)(a(m), b(n)) ≤ d̃(c)(a(m), b(m))
contradicts (27). Therefore π∗ = π̂. �

Proof of Proposition 2: From the Definition 4, we have:

PX(a(m)) =
|D(a(m))|

n
= Pmin

X + ε, (31)

where n = k − j + 1 and ε ≥ 0.
Using (2)

d̃(c)(a(m), u(m)) =

k∑
i=j

d
(c)
O ({a(m)(i)}, {u(m)(i)})

n

=
1

n

∑
i∈D(a(m))

d
(c)
O ({a(m)(i)}, {u(m)(i)}) +

n− |D(a(m))|
n

c

≤ (Pmin
X + ε)ε+ (1− Pmin

X − ε)c
≤ εPmin

X + (1− Pmin
X )c− ε(c− ε)

≤ εPmin
X + (1− Pmin

X )c.
(32)

Similarly, we have

d̃(c)(b(m), u(m)) ≤ εPmin
X + (1− Pmin

X )c. �

B. Pseudocodes

The pseudocode for determining matched pairs based
on OSPA(2) distance between two tracks is given in Algo-
rithm B.1. The pseudocode for updating matched history for
the matched pairs is given in Algorithm B.2. Lastly, the
pseudocode for updating consensed labels to ensure label
consistency is given in Algorithm B.3.

1) Determine Matched Pairs — Algorithm B.1: The asso-
ciated cost C between two sets of tracks is initialised in line 1
based on the size of T

(a)
k and T

(b)
k , and thereafter computed

in lines 2 − 6 via the OSPA track-to-track distance in (2).
The optimal assignment π∗ is computed in line 7 via the
Hungarian algorithm. The assignment matrix H∗ is initialised
based on the size of T

(a)
k and T

(b)
k in line 1 and thereafter

computed in lines 8− 11 such that only optimal assignments
with associated cost less than c (see line 11) are considered
as optimal matches. Here, � denotes the element-wise product
between two matrices. The matched pair matrix Q is computed
in lines 12− 15 based on the assignment matrix H∗.

Algorithm B.1 DetermineMatchedPairs
Input: T

(a)
k ;T

(b)
k ;

Output: Qk = [Q
(a)
k , Q

(b)
k ];

1: C := zeros(|T(a)
k |, |T

(b)
k |);H

∗ := zeros(|T(a)
k |, |T

(b)
k |);

2: for m = 1 : |T(a)
k | do

3: for n = 1 : |T(b)
k | do

4: Cm,n := d̃(c)(a(m), b(n)) via (2)
5: end for
6: end for
7: π∗ := OptimalAssignment(C); . Use Hungarian’s algorithm.
8: for m = 1 : |T(a)

k | do
9: H∗

m,π∗(m)
:= 1;

10: end for
11: H∗ := H∗ � (C < c); . Select assignments with cost C < c.
12: i(a)k := [1 : |T(a)

k |]
T ; i

(b)
k := [1 : |T(b)

k |]
T ;

13: Q(a)
k := i

(a)
k ; Q

(b)
k := H∗ · i(b)k ; Qk := [Q

(a)
k , Q

(b)
k ];

14: Qcheck := [Q
(a)
k �Q(b)

k ] > 0; . Ensure H∗
m,π∗(m)

= 1.
15: Qk := Qk(:, Qcheck);

2) Update Matched History — Algorithm B.2: The matched
history matrix Ξ(a,b)

1:k at time k is initialised in lines 1−2 based
on the current label spaces of two nodes, and the previous
matched history matrix Ξ(a,b)

1:k−1 at time k−1. Line 3 initialises
the indices of the label spaces from two node a and b. The
matched history matrix Ξ

(a,b)
1:k is computed in lines 4 − 10

based on the matched pair matrix Qk = [Q
(a)
k , Q

(b)
k ] from

Algorithm B.1 such that if track i(m) ∈ {1, . . . , |L(a)
1:k|} from

node a (line 7) is matched to track i(n) ∈ {1, . . . , |L(b)
1:k|} from

node b (line 8), then we add 1 into Ξ(a,b)
1:k−1(i(m), i(n)) (line 9)

to record the number of instances that tracks from node a is
matched with track from node b.

Algorithm B.2 UpdateMatchedHistory
Input: Ξ

(a,b)
1:k−1; L

(a)
1:k; L

(b)
1:k; Qk = [Q

(a)
k , Q

(b)
k ];

Output: Ξ
(a,b)
1:k ;

1: Ξ(a,b)
1:k := zeros(|L(a)

1:k|, |L
(b)
1:k|);

2: Ξ(a,b)
1:k (1 : |L(a)

1:k−1|, 1 : |L(b)
1:k−1|) := Ξ

(a,b)
1:k−1;

3: i(a)1:k := 1 : |L(a)
1:k|; i

(b)
1:k := 1 : |L(b)

1:k|
4: for i = 1 : |Q(a)

k | do
5: m := Q

(a)
k (i); n := Q

(b)
k (i);

6: `(m) := L
(a)
k (: m); `′(n) := L

(b)
k (:, n);

7: i(m) := i
(a)
1:k(`(m) = L

(a)
1:k);

8: i(n) := i
(b)
1:k(`′(n) = L

(b)
1:k);

9: Ξ
(a,b)
1:k (i(m), i(n)) := Ξ

(a,b)
1:k (i(m), i(n)) + 1;

10: end for

3) Update Labels— Algorithm B.3: The graph G = (V,E),
which represents the matched history matrices amongst all
nodes ({Ξ(a,b)

1:k }a,b∈N ), is created in line 1. Here, V = 1 :

|{L(a)
1:k}a∈N | is the set of vertices of the graph, and E is the

set of edges representing matches between labels such that
if (i, j) ∈ E then the track {L(a)

1:k}a∈N (:, i) has at least one
instance from time 1 to k (based on {Ξ(a,b)

1:k }a,b∈N ) that is
matched to track {L(a)

1:k}a∈N (:, j). Each label ` ∈ Lcon
k is

updated in the main loop from lines 2 − 18 as follows. The
vertex m ∈ V is computed based on label ` in line 4, while
the set of all nearest vertices M connected to m is computed
in line 5 using the nearest function in MATLAB. From the



14 PREPRINT: IEEE TRANS. SIGNAL PROCESSING, VOL. 69, PP. 5329-5344, 2021.

set M of all connected vertices to the vertex m, we conduct a
search using the inner loop (lines 7−17) to find the least label
from M using lexicographical order defined in (19) (line 10)
subject to the label’s uniqueness constraint in lines 12− 15.

Algorithm B.3 UpdateLabels
Input: Lcon

k ; {Ξ(a,b)
1:k }a,b∈N ; {L(a)

1:k}a∈N ;
Output: Lcon

k ;
. Create a graph representation using matched history matrices (see label
consensus in Section III-E).

1: G = (V,E) := CreateAGraph({Ξ(a,b)
1:k }a,b∈N );

2: for i = 1 : |Lcon
k | do

3: ` := Lcon
k (:, i);

4: m := V (` = {L(a)
1:k}a∈N );

5: M := nearest(G,m); . Get all connected vertices to vertex m.
6: count := |M |;
7: while count > 0 do
8: count := count− 1;

9: Lsel := {L(a)
1:k}a∈N (:,M);

. Get the smallest index using lexicographical order via (19).
10: [∼, n] := min(Lsel);
11: `′ = Lsel(:, n);
12: if `′ /∈ Lcon

k then . Ensure labels’ uniqueness.
13: Lcon

k (:, i) := `′; . Update the label.
14: break; . Escape while loop.
15: end if
16: M(n) := []; . Remove n from the nearest vertices.
17: end while
18: end for
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