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Audio-Visual Based Online Multi-Source Separation
Jonah Ong, Ba Tuong Vo, Sven Nordholm, Ba-Ngu Vo, Diluka Moratuwage, and Changbeom Shim

Abstract—Meeting or conference assistance is a popular ap-
plication that typically requires compact configurations of co-
located audio and visual sensors. This paper proposes a novel
solution for online separation of an unknown and time-varying
number of moving sources using only a single microphone
array co-located with a single visual device. The approach
exploits the complementary nature of simultaneous audio and
visual measurements, accomplished by a model-centric 3-stage
process of detection, tracking, and (spatial) filtering, which
performs separation in a block-wise or recursive fashion. Fusing
the measurements requires solving the multi-modal space-time
permutation problem, since the audio and visual measurements
reside in different observation spaces, but also are unidentified
or unlabeled (with respect to the unknown and time-varying
number of sources), and are subject to noise, extraneous mea-
surements and missing measurements. A labeled random finite
set tracking filter is applied to resolve the permutation problem
and recursively estimate the source identities and trajectories. A
time-varying set of generalized side-lobe cancellers is constructed
based on the tracking estimates to perform online separation.
Evaluations are undertaken with live human speakers.

Index Terms—Audio-visual, source separation, spatial filtering,
labeled random finite sets, generalized labeled multi-Bernoulli

I. INTRODUCTION AND RELATED WORKS

SOURCE separation refers to the estimation of individual
source signals from an unknown mixture signal recorded

by one or more microphones. A common challenge in source
separation is the permutation ambiguity problem [1]. Tradi-
tional approaches to blind source separation (BSS) such as
independent component analysis (ICA) [2], sparseness-based
solutions [3], [4] and non-negative matrix factorization (NMF)
[5] have demonstrated strong interference suppression with
minimal signal distortion on a mixture of static speech sources.
These approaches typically assume a fixed and known number
of stationary sources and exploit their individual statistics in
order to achieve separation. More recent deep neural network
(DNN) based approaches such as uPIT [6], DPCL [7], DANet
[8], and TasNet [9] have also shown promising separation
performance for pre-trained speaker models. Similarly, these
approaches rely on the assumption that the number of speakers
and their characteristics are fixed and known during training
and testing [10].

Source separation for an unknown and time-varying number
of moving speakers is even more challenging since the room
impulse response for each source varies in both time and
position [11]. As a result, standard BSS techniques which
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rely on stationarity assumptions may not be directly appli-
cable [12], [13]. In addition, it is not clear if DNN based
approaches can be extended to accommodate the unknown and
spontaneous appearance and disappearance of active sources.
An alternative to BSS and DNN approaches is a model-centric
approach based on a 3-step process of detection, tracking,
and filtering (DTF), which has the salient feature of being
able to accommodate an unknown and time-varying number of
moving sources without pre-training [13]–[15]. In our previous
work [16], the DTF approach was further demonstrated for
online or recursive operation using the latest generation of
random finite set (RFS) tracking techniques [17], [18], where
separation of multiple speech sources was achieved through
initially taking audio measurements from multiple microphone
arrays, then tracking the sources in space and time, and finally
carrying out beamforming in the direction of the estimated
source. While each of the abovementioned approaches has
relative advantages and disadvantages in different applications,
the common element is that they exclusively rely on audio
content to perform separation.

In noisy or loud settings, humans can employ both audio
and visual cues to hone in on the speaker of interest, and
are thought to incorporate the audio-visual correspondence
between lip movements and speech utterances [19]. Moti-
vated by traditional BSS approaches, an unsupervised audio-
visual solution is proposed in [20], which employs low-rank
matrices to model the background audio-visual information,
while sparsity is used to extract sources through correlations
between the audio and visual modalities. The DNN-based
solution proposed in [21] uses an off-the-shelf face detector
in combination with a face recognition model to extract face
embeddings and estimate the associations of speech signals
to their respective speakers. Subsequent works in [10], [22]
incorporate a DNN-module that extracts lip embeddings and
facial appearance directly from video streams, exploiting joint
audio-visual features in matching lip movements and voice
fluctuations to the correct speaker. The work in [23] further
analyzes the close connection between facial motion and
emitted speech, proposing that the consistency between voice
elements and facial appearance can facilitate the isolation of
speech from overlapping sounds.

DNN-based solutions for audio-visual source separation
have also been specialized to exploit the naturally occurring
features in the case of musical sources. Live musical sounds
typically emanate from a person playing an instrument with
a unique action, and it is possible to exploit the distinctive
correspondence between the audio and visual cues of music
generation to achieve separation. To date, numerous DNN-
based solutions have shown promising audio-visual based
separation performance. The work in [24] demonstrates that
a mix of different musical instruments playing on video can
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be separated by locating the cluster of pixels corresponding to
the sound from a particular instrument. This method exploits
the natural synchronization of audio and visual modalities to
enable joint audio-visual learning without supervision [24],
and was extended to train a self-supervised network for vehicle
tracking with stereo sound [25].

When multiple similar instruments are playing, relying
solely on audio and visual semantics is typically insufficient.
The more recent solution in [26] additionally incorporates
temporal motion information from the video to improve source
differentiation and hence sound separation. An alternative
approach in [27] considers the correspondence between body
dynamics and finger movements to create a context-aware
network which enables more robust audio-visual separation
of both heterogeneous and homogeneous musical sources.
Network training can further be improved with a so-called
sounding object visual grounding technique [28], which dis-
tinguishes between active and silent sources to avoid learning
noise from the latter. Noting that simultaneous musical instru-
ments are usually interactive in their timing, the approach in
[29] improves on one-time separation solutions by recursively
minimizing the residual information in the spectrogram. DNN-
based audio-visual solutions have also found applications in
robot navigation [30], [31], automatic speech recognition [32]–
[34], and person recognition [35]–[38].

The abovementioned approaches to audio-visual based sep-
aration are broadly classified as being data-centric, in the
sense that they require some form of training to capture the
correspondence between the two complementary modes. Data-
centric approaches generally rely on large training sets to work
desirably [21], [23] which can be computationally intensive
during the learning stage. Moreover, the abovementioned data-
centric approaches are generally regarded as offline or batch
methods, as the output decompositions are produced only
after processing the entire input history, as opposed to online
methods where the output and input are synchronized up to
a fixed delay. In addition, it is not immediately clear if such
approaches are amenable for the separation of an unknown
and time-varying number of moving sources.

In contrast to data-centric, model-centric DTF approaches to
audio-visual based separation are virtually unexplored. The use
of co-located audio and visual sensors is intuitively appealing
since the two complementary modalities are used to observe
the same scene. This approach is also naturally suited to
online conferencing or meeting analysis type applications,
where both modes are readily available and are likely to be
more effective than using audio data alone. One of the main
difficulties lies in fusing the two measurement modes since the
3D audio measurements and 2D video measurements reside
in different observation spaces even though they observe the
same physical space or state space. Furthermore, the audio and
visual measurements are subject to noise, spurious or missing
measurements, and are unlabeled or unidentified. In addition,
active sources can move, while new sources can appear and
existing sources can disappear. Collectively, these issues give
rise to the multi-modal space-time permutation problem, since
it is not known which measurements are connected to which
sources (if any at all) in both measurement modes and across

space and time.
Multi-source separation becomes far more challenging in

the popular commercial application of meeting or conference
assistance. Such applications require a compact configuration
with a small number of co-located audio and visual sensors
for spatial efficiency and portability as well as facilitating
synchronization and calibration [39]. The ensuing techno-
logical question is whether multi-source separation can be
achieved with this minimal configuration. Apart from the low
observability, the absence of widely spaced sensors reduces
the available spatial information, thereby causing more noise
in the measurements [40]. A co-located sensor configuration
therefore relies on the complementarity of both modalities to
yield accurate tracking results and improve source separation.
Intuitively, visual observations are used to reduce the uncer-
tainty in 3D localization and assist the audio measurement
[41], [42], which facilitates better directionality and suppres-
sion in spatial filtering.

This work proposes a novel model-centric DTF based
algorithm for online source separation, using only a single
microphone array co-located with a single visual device. The
proposed approach caters for an unknown and time-varying
number of moving sources, without pre-training, by exploiting
the complementary nature of simultaneous audio and visual
measurements. An RFS framework [17], [18] is adopted to
address the fusion of the multi-modal measurements and to
facilitate the tracking of multiple moving sources. The RFS
approach entails the development of stochastic models which
capture the physical relationship between the measurements
and the sources, including the abovementioned uncertainties.
An RFS tracking filter known as the Multi-Sensor Gener-
alized Labeled Multi-Bernoulli (MS-GLMB) filter [43]–[46]
is applied to recursively estimate the number of sources as
well as their identities and trajectories, thereby addressing the
multi-modal space-time permutation problem. The tracking
estimates inform the construction of a time-varying set of
spatial filters, known as Generalized Side-lobe Cancellers
(GSCs) [47] for achieving source separation. Near-field and
far-field evaluations are undertaken with live human speakers.

In summary, our main contribution is a novel audio-visual
source separation algorithm, which is the first to demonstrate
• Model-based solution via detection, tracking and filtering,
• Operation in an online fashion or as the data arrives,
• An unknown time-varying number of moving sources,
• Separation without pre-training of the audio signals.

II. PROBLEM FORMULATION AND SOLUTION OVERVIEW

A. Signal Model

Consider a scenario where the number of sources is time-
varying, and let N(t) denote the number of sources in the
scene at discrete time instance t. Each source indexed by n ∈
{1, ..., N(t)} is located at position vector αn(t) ∈ R3 at the
time instance t. The signal emitted by source n is denoted by
sn, and all signals are assumed to be mutually uncorrelated.
The source signals propagate and are received by a single array
of M microphones, where each microphone element indexed
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by m ∈ {1, ...,M} is corrupted with non-directional diffuse
noise v(m). In this work, we assume source stationarity at
each frame k of length T , i.e. αn(t) = αk,n and N(t) =Nk
for t=(k− 1)T, ..., kT . In this case, the source signal sn can
be represented in blocks of frames:

sn(t)=
K∑
k=1

sn(t)wT (t− (k − 1)T )=
K∑
k=1

sk,n(t), (1)

where wT is a window function of length T , and k is the index
of a time block/frame with length T . Based on the direct path
term only, the mixture received by microphone element m is
approximated by:

y(m)(t)≈
K∑
k=1

Nk∑
n=1

sk,n
(
t− τ(αk,n, u

(m))
)

4π||αk,n − u(m)||
+v(m)(t), (2)

where || · || is the Euclidean distance, τ(αk,n, u
(m)) ,

c−1
s ||αk,n − u(m)|| is the time delay between source n at

position αk,n and microphone m at position u(m)∈R3, and cs
is the speed of sound propagation. The objective is to estimate
the individual source signals frame by frame using the mixture
signals y(1), ..., y(M) with no prior knowledge on the number
of sources, their positions and identities/labels.

B. Visual Assistance
To estimate the individual source signals, knowledge of the

source positions and their labels is crucial, as they are needed
to direct a set of time-varying spatial filters to perform source
separation. In our previous work [16], this is achieved by
tracking multiple sources in 3D space using audio-only data
obtained from four microphone arrays that are spaced around
the room. The use of multiple microphone arrays is necessary
because the audio measurements obtained from a single array
alone typically have insufficient observability to allow accurate
3D tracking. An alternative to multiple microphone arrays is
to use complementary audio-visual data to observe multiple
human speakers in a common physical space. According to
recent surveys [48], [49], visual detections or measurements
via standard object detectors, e.g. body [50], face [51], and
pose [52], have become highly robust and accurate over the
years. Thus the use of a single visual device in combination
with a single microphone array is likely to facilitate accurate
tracking performance. Due to the complementary nature of
the audio and visual measurements, which are conditionally
independent measurements of the same active sources in a
common physical space, it is natural to exploit both modalities
simultaneously. To incorporate 2D visual measurements with
3D audio measurements, it is necessary to specify the physical
relationship P(c)

V , which maps the 3D source position α to
the 2D camera projection α(c)

V . Details of this relationship are
given in the next section.

C. Overview of the Proposed Method
The processing chain of the proposed method is shown in

Fig. 1. Audio and visual measurements of the same (mul-
tiple) sources in a common (physical) space are synchro-
nized and segmented into frames indexed by discrete time

k = 1, ...,K. At each frame, raw microphone signals are
fed into an acoustic localization technique to acquire the 3D
source position candidates. In parallel, images from multiple
cameras are fed into a monocular face detection algorithm
to acquire 2D centroid measurements of the same sources
present. Measurements acquired from both modalities are
subjected to noise (disturbance), they may not reflect a source
that is present (false negative), and some may not correspond
to any source (false positive). Furthermore, the audio and
visual measurements undergo different transformations and
hence reside in different observations spaces. Consequently,
the audio and visual measurements have an inherent multi-
modal space-time permutation issue, since the measurements
are unlabeled or unidentified with respect to the time-varying
and unknown number of sources. The space permutation
aspect refers to the fact that in a given frame, it is not known
which measurements (if any) correspond to which sources,
while the time permutation aspect refers to the fact that across
time, it is not known which measurements (if any) correspond
to the same source. A labeled RFS approach [43]–[46] can be
used to model the stochastic relationship between the multi-
modal measurements and source states, and jointly estimate
the number of sources, their positions and labels. Based on the
tracking estimates, a set of time-varying spatial filters can be
constructed based on the direct path signal model to perform
source separation. The proposed method can be described
in three stages: audio-visual measurement acquisition, multi-
source tracking, and source separation.

1) Audio-Visual Measurement Acquisition: In the first
stage, audio measurements are obtained by first performing the
Short-Time Fourier Transform (STFT) on the raw microphone
signals. For each frame, the Steered-Response Power Phase
Transform (SRP-PHAT) and a region search algorithm known
as Stochastic Region Contraction (SRC) [53], are used to
obtain 3D position candidates from the microphone array. In
parallel, visual measurements are obtained by passing images
into the Dual-Shot Face Detector (DSFD) [51] to acquire
visual detections in the form of bounding boxes, and then
picking the centroids as 2D position candidates of the human
lips.

2) Multi-Modal Multi-Source Tracking: In the second
stage, we adopt a labeled RFS framework [43]–[46] to fuse
the multi-modal (audio-visual) measurements, and produce
estimates of the 3D source positions and labels at each frame,
in a statistically consistent manner. In this framework, the re-
lationship between the multi-modal measurements and multi-
source states is established by the multi-sensor audio-visual
measurement model. The motion, appearance, and disappear-
ance of sources are encapsulated by the multi-source transition
model. Specifically, a tracking filter known as the Multi-Sensor
Generalized Labeled Multi-Bernoulli (MS-GLMB) filter [46]
is employed. The recursive filter propagates a so called fil-
tering density, which provides a stochastic description of the
set of labeled source states at the current time frame, given
all audio-visual measurements up to the current time frame.
An estimator is applied to the filtering density to output the
source positions and labels at each frame.
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Fig. 1: System Diagram.

3) Source Separation via Spatial Filtering: In the third
stage, source separation is achieved via constructing a type
of spatial filter known as the Generalized Side-lobe Canceller
(GSC) [47]. A set of GSCs is constructed, one for each
source present, using the estimated source positions and the
labels at each frame. Each GSC is employed to emphasize
each source of interest while simultaneously suppressing other
interfering sources. Finally, the time-domain separated signals
are recovered using the inverse STFT.

III. AUDIO-VISUAL DATA PRE-PROCESSING

A. Audio Measurement Acquisition

Each raw microphone signal y(m) is segmented into
y

(m)
1 , ..., y

(m)
K via:

y
(m)
k (t) = y(m)(t+ (k − 1)T )wT (t) , (3)

where wT is a selected window function of length T . The win-
dow function is chosen to capture enough signal information
while reducing signal discontinuities at the edges, e.g. a Hann
window wT (t)=0.5− 0.5cos(2πt/T ), t = 0, . . . , T−1.

We denote the discrete STFT of y(m)
k by Y (m)

k . To represent
the segmented frequency-domain raw signals from all micro-
phones in a compact form, we stack them into a vector (where
λ is the frequency bin index):

Yk(λ) =
[
Y

(i)
k (λ)

]M
i=1

. (4)

Given Yk received at the array, the spatial power that emanates
from the direction of the source location αk∈R3, is computed
using SRP-PHAT by [53]:

PA,k(α)=
M−1∑
a=1

M∑
b=a+1

∑
λ

Y
(a)
k (λ)Y ∗

(b)

k (λ)∣∣∣Y (a)
k (λ)Y ∗

(b)

k (λ)
∣∣∣

× ejωλ(τ(α,u(b))−τ(α,u(a))), (5)

where ωλ = 2π(λ − 1)Fs/T , Fs is the sampling frequency,
the PHAT weighting is frequency-dependent, and the expo-
nential term time-aligns the microphone signals based on the
propagation delays. Using the computationally efficient SRC
algorithm [53], the 3D source position candidates are obtained
via peak-picking on SRP-PHAT with a certain threshold (see
Fig. 2). We denote the collection of the 3D position candidates
as a measurement set:

ZA,k = {zA,k,1, ..., zA,k,|Zk|}, (6)

where |ZA,k| denotes the number of elements of ZA,k.

Fig. 2: SRP-PHAT Measurements.

B. Visual Measurement Acquisition

Objects in the 3D world coordinate frame are observed by
multiple cameras indexed by c ∈ {1, ..., C}, wherein each
camera produces object detections as 2D points in the camera
image coordinate frame. Each camera is treated as a projective
device that converts 3D world points onto the 2D image plane
[54]. The perspective projection of a point in the 3D coordinate
frame (world) to a point in a 2D coordinate frame (plane) is
a nonlinear transformation because it can be interpreted as a
many-to-one morphism R3 → R2 (except for an orthographic
projection). Alternatively, this projection can be realized as a
linear transformation in the homogeneous coordinates of the
projective space P, which is an extension of Euclidean space
by adding an extra dimension [54].

Let P(c)
V be the projective transformation of camera c that

takes an arbitrary point α in 3D to a point α(c)
V in 2D (see Fig.

3). Based on the pinhole camera model [54], the transforma-
tion P(c)

V first converts the vector α = (α1, α2, α3)T into its
homogeneous form α̃ = (α1, α2, α3, 1)T (where the subscript
indexes refer to the respective coordinate values), and then
performs a linear transformation via the camera matrix P

(c)
3×4

to obtain the projected homogeneous point α̃(c)
V on camera c,

i.e.

α̃
(c)
V = P

(c)
3×4α̃. (7)

The actual 2D point on the image plane α
(c)
V is recov-

ered via dividing the first two coordinate values of α̃(c)
V =

(α̃
(c)
V,1, α̃

(c)
V,2, α̃

(c)
V,3)T by the value of its last coordinate, i.e.

α
(c)
V = (α̃

(c)
V,1/α̃

(c)
V,3, α̃

(c)
V,2/α̃

(c)
V,3)T . (8)

The camera matrix P
(c)
3×4 of camera c captures the intrinsic

parameters (the focal length, skew coefficient and projection
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Fig. 3: Projective transformation P(c)
V of a point α in 3D to a point α(c)

V in
2D for camera c.

center), and the extrinsic parameters (the rotation and transla-
tion of the camera), which are obtainable via standard camera
calibration techniques [55].

Denote the image obtained from camera c at time frame k
by I(c)

k . The image is fed into a Dual-Shot Face-Detector [51]
which is represented as detection operator D(c) and produces
a set of 2D visual detections at frame k:

Z
(c)
V,k = D(c)(I(c)

k ) = {z(c)
V,k,1, ..., z

(c)

V,k,|Z(c)
V,k|
}, (9)

where z
(c)
V,k = (α

(c)
V,k,1, α

(c)
V,k,2)T is a point specified in 2D

image coordinates, |Z(c)
V,k| denotes the number of visual mea-

surements at camera c. Note that the projective transformation
P(c)
V between a 3D point in world coordinates and the observed

point in 2D image coordinates establishes the relationship
between the 3D source positions and the 2D visual measure-
ments.

C. Audio-Visual Measurements

The multi-modal measurements Zk at frame k comprise all
the constituent measurement sets from the audio and visual
sensors, i.e.

Zk = (ZA,k, ZV,k), (10)

where ZV,k , (Z
(1)
V,k, ...., Z

(C)
V,k ). The multi-modal measure-

ments are the basis for estimating the states and labels of
the sources. However, the following difficulties arise in the
estimation:
• While the audio and visual sensors observe the same

scene and same sources, the individual audio measure-
ments zA,k ∈ ZA,k and individual visual measurements
z

(c)
V,k ∈ Z

(c)
V,k are in different observation spaces.

• Due to undergoing different and highly non-linear trans-
formations, individual measurements are noisy, and each
measurement set may contain false positives (measure-
ments not generated by any source) and false negatives
(missing measurements or missed detections).

• These factors give rise to the inherent multi-modal space-
time permutation problem, since in space it is not known
how the audio measurements from ZA,k and the visual
measurements from Z

(1)
V,k, ..., Z

(C)
V,k are associated, or gen-

erated by which source if any; and in time, it is not

known how the individual audio and visual measurements
from ZA,k and Z

(1)
V,k, ..., Z

(C)
V,k at the current frame are

connected to those from ZA,k+1 and Z(1)
V,k+1, ..., Z

(C)
V,k+1

at the next frame.

In the next section, we show how the multi-modal space-
time permutation problem can be solved using a dynamic
Bayesian estimation framework. A labeled RFS model [43]–
[46] facilitates a statistically consistent specification of the
multi-source transition model and the multi-modal measure-
ment model. The transition model is given by a transition den-
sity that captures the appearance, disappearance and motion
of the sources over time, and captures the uncertainties due to
the time permutation issue. The measurement model is given
by a likelihood which is based on the assumption that the
audio and visual measurements are conditionally independent
given the source states, since the audio and video sensors
produce complementary measurements of the same sources in
a common scene. Consequently, the audio-visual measurement
likelihood is separable and can be written as a product of
the audio likelihood and visual likelihood. The audio like-
lihood function describes the relationship between the SRP-
PHAT measurements and the source positions, including the
uncertainties due to the space permutation issue. The visual
likelihood function describes the relationship between the
DSFD measurements and the source positions, based on the
pinhole camera model, including the uncertainties due to the
space permutation issue. Based on these stochastic transition
and measurement models, a Bayesian RFS filter recursively
estimates the source trajectories and labels.

IV. TRACKING OF MULTIPLE SOURCES

A. Multi-Source Bayes Tracking Filter

The Bayesian RFS framework [17], [18], [56] facilitates the
stochastic modeling of the time-varying nature of the number
of sources and the individual source positions, as well as the
stochastic modeling of the time-varying nature of the number
of measurements which are subjected to noise, false mea-
surements (false positives) and missing measurements (false
negatives). In tracking terminology, false negatives and false
positives are termed missed detections and false detections
respectively, while source appearance and disappearance are
termed birth and death respectively. The multi-modal space-
time permutation problem is referred to as the data association
problem and can be addressed using a labeled RFS tracking
filter [43]–[46]. A visual illustration of the nature of the multi-
modal measurements along with the desired tracking result is
shown in Fig. 4.

Each source at frame k has a state denoted by xk,(xk, `k),
where xk , (αk, α̇k) is a vector capturing the 3D position
and velocity of the source, and `k is a unique label from a
discrete space L0:k. The inclusion of the velocity component
is necessary as an auxiliary variable for the specification of
the state transition model. At each frame k, the collection of
states for multiple sources is represented as a finite set:

Xk = {xk,1, ...,xk,Nk}, (11)
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Fig. 4: Three sources existing from frame k−1 to k+1. The top row shows an
illustration of the audio measurements (3D position candidates). The middle
row shows an illustration of the visual measurements (2D point detections).
Notice the multi-modal space-time permutation problem, whereby in space it
is not known how audio measurements from ZA,k and visual measurements
Z

(1)
V,k are associated, or generated by which source if any; and in time, it is

not known how audio and visual measurements from ZA,k and Z(1)
V,k at the

current frame are connected to those from ZA,k+1 and Z(1)
V,k+1 at the next

frame. The bottom row shows an illustration of the tracking result addressing
the multi-modal space-time permutation problem.

herein referred to as a multi-source state, where Nk is the num-
ber of sources. A key feature of labeled RFS modeling is the
assumption of unique labels in the multi-source state, which
treats the trajectory of an individual source as a sequence of
states with a common label (see Fig. 4).

In Bayesian RFS filtering, the aim is to estimate frame-
by-frame (recursively) the multi-source state Xk, given the
multi-modal measurements obtained from the beginning of
time up to the current time frame k, i.e. Z1:k , (Z1, ..., Zk).
The multi-source Bayes filter is a recursive mechanism for
computing the probability density of Xk given Z1:k. In the
Bayesian paradigm, such a probability density is referred
as the filtering density denoted by πk|k(Xk|Z1:k), which
captures all uncertainty in the multi-source state given Z1:k.

The propagation of the filtering density is a recursive
procedure consisting of a time-update followed by a data-
update. The first step is given by:

πk+1|k(Xk+1|Z1:k)=

∫
f(Xk+1|Xk)πk|k(Xk|Z1:k)δXk, (12)

where the above set integral is derived from Finite Set Statis-
tics (FISST) for dealing with probability densities of RFSs
in a mathematically consistent manner [17], [18], and the
probability density f(Xk+1|Xk) is the multi-source transition
density or the probability density that multi-source state Xk at
frame k transitions to Xk+1 at the next frame k+1. The multi-
source transition density is derived from a stochastic model
that captures all possible source births, deaths and motions,
i.e. the previously discussed time permutation aspect. The
parameters for the transition model are given in Section IV-B.

The time-updated density (or predicted density) (12) describes
the uncertainty in Xk+1, given all multi-modal measurements
Z1:k up to the current time frame, and addresses the time
permutation part of the data association problem.

The second step is given by:

πk+1|k+1(Xk+1|Z1:k+1) =

g(Zk+1|Xk+1)πk+1|k(Xk+1|Z1:k)∫
g(Zk+1|Xk+1)πk+1|k(Xk+1|Z1:k)δXk+1

, (13)

where the probability density g(Zk+1|Xk+1) is the multi-
modal (audio-visual) measurement likelihood or the proba-
bility density of the multi-modal measurements Zk+1 given
the multi-source state Xk+1. The multi-modal measurement
likelihood is derived from a stochastic model that encapsulates
noise, detections, missed detections, false detections and multi-
modal association uncertainty, i.e. the previously discussed
audio-visual space permutation aspect. The parameters for
the multi-modal measurement model are given in Section
IV-C. The data-updated density (or new filtering density)
(13) contains all information about Xk+1, conditioned on
the multi-modal measurements Z1:k+1 up to the new time
frame, and addresses the space permutation part of the data
association problem.

B. The Standard Multi-Source Transition Model

Given the multi-source state Xk, each state xk,(xk, `k) ∈
Xk either persists and survives with probability PS and
transition to a new state (xk+1, `k+1) that inherits the same
label with transition density fS(xk+1|xk, `k)δ`k [`k+1], or dies
with probability 1−PS . The single-source transition density
fS(xk+1|xk, `k) gives the probability density of source label
`k moving from state xk to state xk+1. For tracking live human
speakers, a popular choice for the transition density is the
Langevin model [57]–[59], which takes on the form:

fS(xk+1|xk, `k) = N (xk+1; Fxk,RRT ), (14)

where N (·; Fxk,RRT ) is a Gaussian probability density func-
tion with mean Fxk and covariance RRT , F = Fpseudo ⊗ I3,
R = Rpseudo ⊗ I3, I3 an identity matrix of 3 dimensions, ⊗
is the Kronecker product,

Fpseudo =

[
1 φ
0 e−βφ

]
Rpseudo = σΞ

[
0

ν
√

1− e−2βφ

]
,

(15)
β is the rate constant that controls the rate at which the ve-
locity decays, ν is the steady-state root-mean-square velocity
constant, φ is the discretization time step interval, and σΞ is
a 3D column vector of the component standard deviations of
the process noise.

At this next time, a set of new sources denoted by Bk+1

with labels {`k+1 : (xk+1, `k+1) ∈ Bk+1} can appear individ-
ually with probability rB(`k+1) and distributed according to
the birth density pB(·, `k+1). A label follows the convention
`k = (ς, ι) ∈ Lk, where ς ∈ {k} denotes the time frame of
birth and ι∈N denotes the index of source born at the same
time [43]. Consequently, the labels of a multi-source state are
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distinct/unique for all frames, and the label space for sources
at frame k is constructed recursively by L0:k=L0:k−1∪Lk.

The RFS Xk+1 is the union of the survivals Wk+1 and
births Bk+1 which are assumed to be statistically independent.
Denote by fS (Wk+1|Xk) and fB(Bk+1), the probability
densities of the surviving sources Wk+1 from Xk, and the
births of new sources Bk+1 respectively. The multi-source
transition density is given by [43]:

f(Xk+1|Xk)=fS(Wk+1|Xk)fB(Bk+1) . (16)

The above product is a stochastic model for addressing the
time permutation problem. Under this model, source appear-
ance, disappearance and motion are statistically independent.
Importantly, distinct/unique labels are propagated for exist-
ing sources that continue to be active. The appearance of
new sources is catered for with new distinct labels, while
deactivated sources are removed without reusing their labels.
The derivation and full expression for (16) is not required
for this paper, however readers are referred to the original
work [43] for details. The transition density (16) captures all
possible source births, deaths and motions in the transition
of a multi-source state from one frame to the next, and is
parameterized by: the probability of survival PS , single-source
transition density fS , probability of birth rB , and the birth
density pB . Specific values for these parameters are provided
in the experimental section.

C. The Standard Multi-Sensor Measurement Model

1) Microphone Array Measurements: Given a multi-source
state Xk, each xk = (xk, `k) ∈ Xk is either detected by
the microphone array with probability PA,D and generates a
detection zA,k ∈ ZA,k with a likelihood gA(zA,k|xk, `k), or
is missed with probability 1−PA,D. The audio single-source
likelihood gA(zA,k|xk, `k) gives the probability density of the
audio measurement zA,k given the source state (xk, `k). For
SRP-PHAT measurements, the likelihood has the form:

gA(zA,k|xk, `k) = N (zA,k; Hxk, σAσ
T
A), (17)

where H = [I3, 0], and σA is a 3D column vector of the
component standard deviations describing the uncertainty in
the audio measurement (σAσTA is the 3-by-3 noise covariance
matrix).

The detection process also generates false detections, con-
ventionally characterized by an intensity function κA(zA,k),
λAUA(zA,k) on the measurement space [17], [18]. The number
of false detections is modeled by a Poisson distribution with
mean λA, and the false detections themselves are uniformly
distributed in the audio measurement space according to UA. It
is standard to assume that the audio detections are statistically
independent from the false detections [17], [18].

Let L(Xk) be a set of all distinct source labels present in
Xk, i.e. L(Xk),{` : (xk, `)∈Xk}. A single-array association
θA,k∈ΘA,k is defined as a mapping from the source labels to
the audio measurement indices, i.e. θA,k :{`k :`k∈L(Xk)}→
{0: |ZA,k|}, such that no two distinct arguments are mapped to
the same positive value [43]. This property ensures each audio

measurement comes from at most one source. For example,
θA,k(`k) > 0 corresponds to source `k generating detection
zA,k,θA,k(`k), while θA,k(`k)=0 means a missed detection for
source `k.

The multi-source audio measurement likelihood is given by:

gA(ZA,k|Xk) ∝
∑

θA,k∈ΘA,k

∏
(xk,`k)
∈Xk

ψ
(θA,k(`k))
A,ZA,k

(xk, `k), (18)

where

ψ
(j)
A,ZA,k

(xk, `k)=

{
PA,DgA(zA,k,j |xk,`k)

κA(zA,k,j)
, j >0

1− PA,D, j =0
. (19)

The mixture form of the audio measurement likelihood (18)
takes in account all possible combinations of missed detec-
tions, false detections and the source detections that can occur
in the audio measurements.

2) Camera Measurements: Given a multi-source state Xk,
each xk = (xk, `k) ∈Xk is either detected by the camera c
with probability P

(c)
V,D and generates a detection z

(c)
V,k ∈ Z

(c)
V,k

with a likelihood g(c)
V (z

(c)
V,k|xk, `k), or is missed by camera c

with probability 1−P (c)
V,D. The visual single-source likelihood

g
(c)
V (z

(c)
V,k|xk, `k) for camera c gives the probability density of

the visual measurement z(c)
V,k given the source state (xk, `k).

For 2D camera detections, the likelihood for camera c takes
on the form:

g
(c)
V (z

(c)
V,k|xk, `k) = N (z

(c)
V,k;P(c)

V (Hxk), σ
(c)
V σ

(c)T
V ), (20)

where P(c)
V is the transformation described in Section III-B,

and σ(c)
V is a 2D column vector of the component standard de-

viations describing the uncertainty in the visual measurement
(σ(c)
V σ

(c)T
V is the 2-by-2 noise covariance matrix).

The detection process also generates false measurements
or detections, conventionally characterized by an intensity
function κ(c)

V (z
(c)
V,k),λ(c)

V UV (z
(c)
V,k) on the measurement space

for camera c [17], [18]. The number of false detections is
modeled by a Poisson distribution with mean λ

(c)
V , and the

false detections themselves are uniformly distributed in the
visual measurement space according to UV . It is standard to
assume that the visual detections are statistically independent
from the false detections [17], [18].

A single-camera association θ
(c)
V,k ∈ Θ

(c)
V,k is defined as a

mapping from the source labels to the visual measurement
indices, i.e. θ(c)

V,k :{`k :`k∈L(Xk)}→{0: |Z(c)
V,k|}, such that no

two distinct arguments are mapped to the same positive value
[43]. This property ensures each visual measurement comes
from at most one source. For multiple cameras, a multi-camera
association is the vector θV,k , (θ

(1)
V,k, ..., θ

(C)
V,k ) ∈ ΘV,k of

all single-camera associations having the same aforementioned
positive one-to-one property, where ΘV,k,Θ

(1)
V,k×...×Θ

(C)
V,k is

the space of all possible multi-camera associations [46].
The multi-source visual measurement likelihood is given by:

gV(ZV,k|Xk) ∝
∑
θ
(1)
V,k

...
∑
θ
(C)
V,k

∏
(xk,`k)
∈Xk

C∏
c=1

ψ
(c,θ

(c)
V,k(`k))

V,Z
(c)
V,k

(xk, `k), (21)
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where θ(1)
V,k ∈ Θ

(1)
V,k..., θ

(C)
V,k ∈ Θ

(C)
V,k , and

ψ
(c,j)

V,Z
(c)
V,k

(xk, `k)=


P

(c)
V,Dg

(c)
V

(
z
(c)
V,k,j |xk,`k

)
κ
(c)
V

(
z
(c)
V,k,j

) , j >0

1− P (c)
V,D, j =0

, (22)

The mixture form of the visual measurement likelihood (21)
takes in account all possible combinations of missed detec-
tions, false detections and the source detections that can occur
in the visual measurements.

3) Audio-Visual Measurement Likelihood: While the audio
and visual sensors produce different measurements in different
observation spaces, they are nonetheless observing the same
human speakers in a common physical space. Consequently,
the measurement sets from each (audio or visual) sensor can
be treated as conditionally independent given the multi-source
state, and the multi-modal measurement likelihood at time k
can be written as:

g(Zk|Xk) = gA(ZA,k|Xk) · gV (ZV,k|Xk). (23)

Each constituent likelihood function in (23), i.e. gA or gV ,
contains a nested sum that enumerates all possible associations
in that measurement domain, thereby taking into account all
possible combinations of missed detections, false detections
and the source detections. The product of gA and gV in (23)
therefore contains all combinations of cross-domain associa-
tions, thereby presenting a model for addressing the multi-
modal space-time permutation problem.

In summary, the multi-modal measurement likelihood de-
scribes the statistical connection between the audio measure-
ments ZA,k and the visual measurements ZV,k which are
complementary observations of the same state Xk. The multi-
modal measurement likelihood is parameterized by: the audio
sensor’s probability of detection PA,D, single-source likeli-
hood gA, false detection intensity, κA; and the visual sensors’
probabilities of detection P (1)

V,D, ..., P
(C)
V,D, single-source likeli-

hoods g(1)
V , ..., g

(C)
V , false detection intensities, κ(1)

V , ..., κ
(C)
V .

D. Implementation and State Estimation

The MS-GLMB filter [46] is the analytic solution to the
multi-source Bayes recursion (i.e. (12) and (13)) under the
standard multi-source transition and multi-sensor measurement
models. The filter propagates the time-updated and data-
updated filtering densities in a GLMB form:

πk|k(Xk)=∆(Xk)
∑

θ1:k∈Θ1:k

ω
(θ1:k)
k|k (L(Xk))

∏
xk∈Xk

p
(θ1:k)
k|k (xk),

(24)
where ∆(·) is a distinct label indicator, i.e. ∆(Xk) = 1 if
the cardinality |L(Xk)|= |Xk|, θ1:k ∈Θ1:k is the history of
multi-sensor association mappings up to frame k, i.e. θ1:k ,
(θ1, ..., θk) where θk , (θA,k, θV,k) and Θk , ΘA,k × ΘV,k.
Each ω(θ1:k)

k|k (·) is a non-negative weight such that∑
L⊆L0:k

∑
θ1:k∈Θ1:k

ω
(θ1:k)
k|k (L) = 1, (25)

and can be interpreted as the probability of sources with label
set L being active, as well as being associated with the audio

and visual measurements given by the association history θ1:k.
Each p(θ1:k)

k|k (·, `) is the probability density of the source state
with label ` and association history θ1:k.

The MS-GLMB filter offers a polynomial time implemen-
tation mechanism, which has a linear complexity in the sum
of the total number of measurements across all sensors [46].
At each frame k, the MS-GLMB filter outputs a multi-source
state estimate

X̂k = {(α̂k,1, ˆ̀
1), ..., (α̂k,|X̂k|,

ˆ̀
|X̂k|)}, (26)

via a standard GLMB estimator applied to the GLMB filtering
density (24) [46]. The source positions and labels over time
constitute the estimated source tracks, thereby resolving the
space-time permutation problem that arises from the multi-
modal measurements as depicted in Fig. 4.

V. SOURCE SEPARATION

A. Spatial Filtering

The estimate X̂k acquired at each frame from the track-
ing filter informs the construction of a set of time-varying
beamformers based on a free space direct-path model. We use
the GSC [47], which contains two parts: a beamformer that
determines the response of the source of interest (SOI), and
a blocking mechanism to prevent the SOI from entering the
canceler.

To estimate the SOI specified by label ˆ̀
i, the corresponding

beamformer is constructed to achieve two objectives: select
the direction of the source specified by the estimated posi-
tion α̂k,i, and suppress other interfering sources specified by
{(α̂k,j , ˆ̀

j) ∈ X̂k}N̂kj=1 for i 6= j, where N̂k = |X̂k| is the
estimated number of sources. For each time-frequency (TF)
point (λ, k), the weight of the beamformer Ŵk,ˆ̀i

(λ) is given
by [16]:

Ŵk,ˆ̀i
(λ) =

((
Dk,X̂k

(λ)
)H)†

rN̂k(ˆ̀
i), (27)

where H is the Hermitian transpose, † denotes the Moore-
Penrose pseudo-inverse, rN̂k is a selection vector whose di-
mension varies depending on the estimated number of sources
N̂k, i.e. rN̂k [ˆ̀i]=[δˆ̀

1
[ˆ̀i], . . . , δˆ̀

N̂k

[ˆ̀i]]
T such that δi[j] =1 if

i=j and zero otherwise, and

Dk,X̂k
(λ)=


ejωλ(τ(α̂k,1,u

(1))) · · · ejωλ
(
τ(α̂k,N̂k

,u(1))
)

...
. . .

...

ejωλ(τ(α̂k,1,u
(M))) · · · ejωλ

(
τ(α̂k,N̂k

,u(M))
)

,(28)

is a matrix with columns representing the steering vectors for
each estimated source. The number of columns depends on
the estimated number of sources N̂k. Note that if N̂k=1, (27)
reduces to the classical delay-and-sum beamformer.

The blocking matrix is defined to be the orthogonal com-

plement to
(
Ŵk,ˆ̀i

(λ)
)H

[16], [47]:

Bk,ˆ̀i(λ)=I−Ŵk,ˆ̀i
(λ)

[(
Ŵk,ˆ̀i

(λ)
)H

Ŵk,ˆ̀i
(λ)

]−1(
Ŵk,ˆ̀i

(λ)
)H
,

(29)
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where I is an identity matrix. Subsequently, the GSC weight
vector is defined by:

Gk,ˆ̀i(λ) = Ŵk,ˆ̀i
(λ)− Bk,ˆ̀i(λ)Vk(λ), (30)

where

Vk,opt(λ) =

arg min
V

k∑
η=1

γk−η
∣∣∣∣(Ŵη,ˆ̀i

(λ)− Bη,ˆ̀i(λ)V
)H

Yη(λ)

∣∣∣∣2 , (31)

γ ∈ [0, 1] is a positive constant. Eq. (31) can be solved
recursively using Recursive Least Squares (RLS) [60].

The output of the GSC beamformer for the estimated source
label ˆ̀

i at each TF point (λ, k) is given by:

Sk,ˆ̀i(λ) =
(
Gk,ˆ̀i(λ)

)H
Yk(λ). (32)

Finally, the estimated time-domain signal ŝˆ̀
i

of source label
ˆ̀
i is given by the inverse STFT.

VI. EXPERIMENTS

In this section, we present the evaluations for the proposed
audio-visual based separation method for live human speakers
in an acoustic room. The algorithm is tested in scenarios
where human speakers are talking and walking at the same
time. We initially consider a detailed analysis of the proposed
algorithm in near-field vs far-field. In Scenario 1A, the human
speakers are situated closer to the audio-visual sensors, while
in Scenario 2, human speakers are situated farther away
from the audio-visual sensors. In addition, we present an
ablation study for each scenario whereby the measurements,
tracking and separation are performed using the audio data
only. This is undertaken to demonstrate the improvement in
performance due to the combination of audio and visual data.
The experimental setup is summarized in Section VI-A, and
the parameters used for the proposed algorithm are explained
in Section VI-B. The evaluation of the accuracy of the SRP-
PHAT measurements is given in Section VI-C, followed by the
tracking performance of the MS-GLMB filter in Section VI-D,
and the separation performance in Section VI-E. Subsequently
in Section VI-F, we consider two additional near-field experi-
ments. Scenario 1B has up to three moving sources appearing
at different times, and Scenario 1C has at most one source but
with two distinct modes of background interference.

A. Experimental Setup

The experiment is conducted in a 7.67m × 3.41m × 2.7m
enclosed room with reverberation measured at T60 ≈ 0.25s,
using a single linear array of 6 microphones, which are
calibrated to the same gain/sensitivity. These microphones are
connected into 3 RME-OctaMic 8-channel pre-amps. Each pre-
amp is daisy-chained via MADI cables into the computer. For
the visual sensor, a ZED 2 stereo camera from StereoLabs
is used to record at 1080p. The linear microphone array and
ZED 2 stereo camera are co-located and placed close to the
wall of the room as shown in Fig. 5.

Fig. 5: Audio-Visual Sensor Setup.

Fig. 6: Scenario 1A (left) and Scenario 2 (right).

To demonstrate the multi-source tracking and source sep-
aration performance of the proposed method, Scenario 1A
considers three people talking and walking towards the sensors
as shown in Fig. 6 (left). The participants stop talking and turn
their faces away from the cameras at different times to simulate
an exit. A more challenging Scenario 2 employs a similar setup
but with the speakers further away from the sensors as shown
in Fig. 6 (right). To acquire the original speech signals for
evaluation, the participants self-recorded their speech while
performing the experiments.

B. Algorithm Parameters

TABLE I: Parameters for microphone array measurements

Fs 16kHz
High-pass filtering 1kHz
Window function Hann

T 2048
Detector SRP-PHAT [53]

TABLE II: Parameters for visual device measurements

c 1 (left camera) and 2 (right camera)
FPS 8

P
(1)
3x4

 −1021.7 −827.2 −575.8 7071.5
31.8 142.0 −1184.0 2012.8
0.04 −0.83 −0.56 3.81


P

(2)
3x4

 −1021.9 −822.9 −579.0 6940.6
28.3 131.3 −1192.6 2030.0
0.03 −0.82 −0.57 3.81


Detector Dual-Shot Face Detector [51]
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TABLE III: Parameters for MS-GLMB transition

Multi-source transition density
β 10s−1

ν 1ms−1

φ 0.128s

σΞ [1.2, 1.2, 0.2]Tms−1

PS 0.999
{rB(`i)}3i=1 rB(`i)=0.005 for all i
{pB(·, `i) , µ

(1)
B = [2.0 0.7 1.7 0 0 0]T ,

N (·;µ(i)
B , P

(i)
B )}3i=1 µ

(2)
B = [3.0 0.5 1.7 0 0 0]T ,
µ

(3)
B = [4.0 0.6 1.7 0 0 0]T ,
P

(i)
B = 0.22I9 for all i

TABLE IV: Parameters for MS-GLMB likelihood

Audio likelihood
σA [0.1, 0.1, 0.1]Tm
PA,D 0.6
κA 10UA

Visual likelihood
σ

(c)
V [20, 20]T for c = 1, 2

P
(c)
V,D 0.99 for c = 1, 2

κ
(c)
V 1UV for c = 1, 2

TABLE V: Parameters for source separation via spatial filtering

Beamformer Generalized Side-lobe Canceller
Solver Recursive Least Squares

Window function Hann
T 2048

Overlap 50%

C. Evaluation of SRP-PHAT Measurements

The audio measurements generated from the single mi-
crophone array via SRP-PHAT are in the form of 3D po-
sition candidates for active sources. The measurements are
not only noisy, but are also subjected to false measurements
and missing measurements. To evaluate the accuracy of the
audio measurements at each frame, the Optimal Sub-Pattern
Assignment (OSPA) metric [61] is applied to quantify the
error between the set of audio measurements and the set
of true source positions. The OSPA metric typically uses a
standard Euclidean distance as a base distance, and a cut-
off value beyond which a localization error is deemed to
be cardinality error. Consequently, the OSPA metric captures
both localization and cardinality errors between the set of
measurements and set of truths. The numerical value of the
OSPA metric lies between zero and the chosen cut-off, which
can be interpreted as a per-point error with units of meters.
Further details on the OSPA metric can be found in [61].

The OSPA metric with a cut-off at 1m is shown versus
time in Fig. 7 for Scenarios 1A and 2. It can be seen that
the error values are consistently high in both scenarios and
occasionally saturate at the cut-off value. The time averaged
OSPA errors are shown in Table VI, along with the local-
ization and cardinality components. The high average value

TABLE VI: Average OSPA distance on the obtained SRP-PHAT measure-
ments.

Scenario Average OSPA Components (m)
Localization Cardinality OSPA

1A 0.253 0.561 0.814
2 0.291 0.595 0.886

indicates that the audio-based measurements alone are inaccu-
rate. Furthermore, the large localization component indicates
significant positional errors, and the relatively high proportion
of the cardinality component indicates significant false and
missing measurements. The overall higher errors in Scenario
2 compared to Scenario 1A are due to the sources being
farther away from the array. Consequently, the OSPA results
in both scenarios suggest that the audio measurements alone
are insufficient for accurate tracking of the sources, due to the
lack of observability with only a single microphone array.

D. Evaluation of Multi-Source Tracking Filter

The multi-modal audio and visual measurements are mod-
eled in the RFS framework and processed into trajectory
estimates with the MS-GLMB filter. The output of the MS-
GLMB tracking filter is a set of unique source labels and
corresponding position estimates over time which together
constitute a set of tracks or trajectories. Due to the imperfect
nature of the multi-modal measurements, it is possible that the
estimated trajectories will be noisy, in addition to potentially
having incorrect labels and/or misaligned starting and finishing
times, and extraneous or missing trajectories. To evaluate the
accuracy of the audio-visual source tracking, the OSPA(2)

metric [16], [62] can be used, which quantifies the error
between the two sets of estimated and true source trajectories.
The OSPA(2) metric uses a time averaged OSPA distance
as a base distance between two individual tracks, and has
a separate cut-off value beyond which a tracking error is
deemed to be a labeling error. Consequently, the OSPA(2)

metric captures both tracking and labeling errors, and the
numerical value is interpreted as time-averaged per-track error
with units of meters. The metric is typically calculated over
a moving window and plotted versus time. Further details on
the OSPA(2) metric can be found in [62].

For this evaluation, a cut-off of 1m is used, with a 10-scan
moving window. The OSPA(2) evaluation for combined audio-
visual tracking is shown in Fig. 8 for Scenarios 1A and 2,
which for comparison also shows the OSPA(2) evaluation for
audio-only tracking with the single microphone array. It can
be seen that in Scenario 1A, combined audio-visual tracking is
consistently accurate with low errors below 0.1m. Similarly for
Scenario 2, the combination of audio and visual measurements
produces consistently accurate tracking estimates with low
errors below 0.2m, although the average errors are higher than

Fig. 7: Scenario 1A (top) and Scenario 2 (bottom): OSPA distance on the
SRP-PHAT measurements (lower is better).
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Fig. 8: Scenario 1A (top) and Scenario 2 (bottom): OSPA(2) distance between
estimated and true source trajectories (lower is better).

in Scenario 1A, due to increased distance of the sources from
the sensors. Furthermore, the tracking results with only audio
measurements from a single microphone array are consistently
poor with very high errors in both scenarios. The cause
of the relatively high errors for tracking with only audio
measurements are not only due to the high positional errors,
but also due to label switching errors, and some incidence of
extraneous and missing source trajectories. These observations
suggest that the multi-modal combination of audio and video
measurements enables accurate multi-source tracking, and
further highlight the limitations on the observability of the
source trajectories with only a single microphone array.

E. Evaluation of Source Separation

The set of position and identity estimates from the MS-
GLMB tracking filter are used to perform spatial filtering
or source separation via a set of GSCs. As the sources are
moving within the room, the delays of each source signal,
with respect to the microphone array, are changing over time.
Therefore, perceptual measures such as PESQ [63], STOI
[64] and PEASS [65], that rely on delay-compensation, are
not directly applicable for performance evaluations. While
it may be possible to apply these measures on time blocks
during which sources are almost stationary, there may be
insufficient signal information within each short block to allow
a meaningful evaluation [16].

TABLE VII: Scales of SIG, BAK and OVRL in the Subjective Listening Test.

SIG
Rating Description

5 Very natural, no degradation
4 Fairly natural, little degradation
3 Somewhat natural, somewhat degraded
2 Fairly unnatural, fairly degraded
1 Very unnatural, very degraded

BAK
Rating Description

5 Not noticeable
4 Somewhat noticeable
3 Noticeable but not intrusive
2 Fairly conspicuous, somewhat intrusive
1 Very conspicuous, very intrusive

OVRL
Rating Description

5 Excellent
4 Good
3 Fair
2 Poor
1 Bad

Fig. 9: Mean scores for SIG, BAK, and OVRL for the estimated source signals
and original mixture signals evaluated on Scenario 1A.

TABLE VIII: One-way ANOVA test between the estimated source signals
and original mixture signals on Scenario 1A.

Source p-value
SIG ↑ BAK ↓ OVRL ↓

1 Proposed 0.871* 0.0052 0.0058
Ablation 0.831* 0.0641* 0.0931*

2 Proposed 0.913* 0.0069 0.0072
Ablation 0.893* 0.0591* 0.1213*

3 Proposed 0.844* 0.0044 0.0051
Ablation 0.884* 0.0626* 0.0824*

The asterisk (*) denotes values that are above the selected significance
level, i.e. 0.05. (↑ means higher is better while ↓ means lower is better.)

Instead, we administer subjective listening tests based on
the ITU-T P.835 methodology which evaluates the extent of
signal distortion and the overall quality of noise suppression
[66]. In the test, each participant is instructed to listen to the
clean speech signal (upper anchor reference), the separated
speech signal (to be evaluated) and the mixture signal (lower
anchor reference), and then rate them on: The speech signal
alone using a five-point scale of signal distortion (SIG); The
background interfering noise alone using a five-point scale of
background intrusiveness (BAK); The overall quality using a
five-point scale of mean opinion score (OVRL). The scales for
SIG, BAK and OVRL are described in Table VII.

The evaluation considers the separation performance based
on a single microphone array combined with visual tracking
assistance from a single camera device (proposed method), and
for comparison considers the separation performance using
audio-only data without visual tracking assistance (ablation
study). In the evaluation, 20 people (12 males, 8 females)
of ages from 20 to 30 are recruited to participate in the
listening test. A statistical analysis of variance (ANOVA) test
at a 0.05 significance level is used to determine if there is a
statistically significant difference between the quality of the
separated speech signal and the mixture. All video/audio files
for both scenarios are available via GitHub: https://github.com/
researchwork888/AVseparation.

1) Scenario 1A : Examination of the audio-visual outputs
suggests that there is some degree of interference suppression,
though the overall performance is naturally constrained by
the use of a single microphone array. The mean scores of
all 3 criteria, i.e. SIG, BAK and OVRL, are shown in Fig.
9. Some difference is observed in the BAK and OVRL mean
scores for all 3 estimated source signals (blue bars) and the
mixture signals (orange bars), while the SIG mean scores
are relatively similar across the board, which confirms the
observed suppression with minimal distortion.
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Fig. 10: Mean scores for SIG, BAK, and OVRL for the estimated source
signals and original mixture signals evaluated on Scenario 2.

TABLE IX: One-way ANOVA test between the estimated source signals and
original mixture signals on Scenario 2.

Source p-value
SIG ↑ BAK ↓ OVRL ↓

1 Proposed 0.811* 0.0077 0.0081
Ablation 0.781* 0.2542* 0.3415*

2 Proposed 0.753* 0.0091 0.0089
Ablation 0.803* 0.3218* 0.4035*

3 Proposed 0.714* 0.0072 0.0074
Ablation 0.694* 0.2966* 0.3211*

The asterisk (*) denotes values that are above the selected significance
level, i.e. 0.05. (↑ means higher is better while ↓ means lower is better.)

The corresponding p-values for the ANOVA test are given
in Table VIII. The BAK and OVRL p-values for all three
sources are below the 0.05 significance value, which suggests
a statistically significant difference between the separated and
mixture signals in terms of background interference level
and overall speech quality. The SIG p-values are well above
the 0.05 significance level, which suggests that there is no
statistically significant difference in terms of signal distortion
between the estimated and the mixture signals.

The BAK and OVRL mean scores for the audio-only
ablation method (green bars) are much lower than for the
proposed audio-visual method, while the SIG mean scores are
on par across the board. Furthermore, the BAK and OVRL
p-values for the ablation are above 0.05 for all sources,
which suggests that the audio-only approach produces poor
separation performance. In particular, the separated signals
produced by the audio-only approach not only have poor
interference suppression and overall quality, but are truncated
at the start and end of the signals due to late tracking initiation
and termination.

Consequently, a co-located audio-visual configuration is
capable of performing separation, but is naturally constrained
by the limited spatial coverage of the single microphone array.
Nonetheless, the use of visual assistance to complement the
audio data is still significantly better than an audio-only ap-
proach, which is due to vastly improved tracking performance
as observed in the previous subsection.

2) Scenario 2: The mean scores of all 3 criteria, i.e. SIG,
BAK and OVRL, are shown in Fig. 10, and the results for
ANOVA test are given in Table IX. A similar trend is observed
to Scenario 1A, although now with lower SIG and BAK scores
in Scenario 2. As expected, the proposed audio-visual based
approach still achieves a small degree of separation but clearly
deteriorates as the sources are placed farther away from the
microphones.

Fig. 11: Screenshots of Scenario 1B (top) and Scenario 1C (bottom).

The results for the audio-only ablation indicate more pro-
nounced failures. The BAK and OVRL means scores for all
estimated source signals are low and almost match the scores
of the mixture signals. The results of the ANOVA tests also
confirm poor separation performance. These failures in the
audio-only ablation are expected since the effectiveness of the
GSC beamformer is highly dependent on the accuracy of the
tracking estimates, which in this case have large localization
errors, in addition to extraneous and missing tracks, as well
as late initiations and terminations.

In short, while the proposed audio-visual tracking main-
tains accuracy when sources are farther away, the separation
performance degrades with increasing distance between the
sources and the single microphone array. However, compared
to using audio-only where the separation fails due to erroneous
tracking information, the audio-visual approach still maintains
consistency in the output.

F. Additional Near-field Experiments

In the previous subsections, it was observed that near-field
performance (Scenario 1A) was markedly better than far-field
performance (Scenario 2), in all aspects of measurements,
tracking, and separation. It was also observed via the abla-
tion studies that audio-visual based separation is much more
effective than audio-only separation. We now further explore
the audio-visual near-field case with two additional scenarios
as described below.

In Scenario 1B, three distinct sources enter the scene at
different times, and all are moving while they are speaking.
In Scenario 1C, the source enters mid-scenario but its audio is
obscured by background noise from a blender and a vacuum
cleaner in the room. In both cases the algorithm has no
knowledge of the number of sources or the times of their entry.
The objective is to separate the mixture of an unknown and
time varying number of moving sources.
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Fig. 12: Mean scores for SIG, BAK, and OVRL for the estimated source
signals and original mixture signals evaluated on Scenario 1B.

TABLE X: One-way ANOVA test between the estimated source signals and
original mixture signals on Scenario 1B.

Source p-value
SIG ↑ BAK ↓ OVRL ↓

1 Proposed 0.891* 0.0057 0.0061
2 Proposed 0.853* 0.0041 0.0044
3 Proposed 0.824* 0.0039 0.0051

The asterisk (*) denotes values that are above the selected significance
level, i.e. 0.05. (↑ means higher is better while ↓ means lower is better.)

The screenshots in Fig. 11 illustrate the setup of the two
additional scenarios. Due to space constraints we omit the
evaluation of the measurements and tracking, as well as
the ablation study with audio-only measurements. We only
present the evaluation of the separation in a similar manner to
Section VI-E. All video/audio files for the additional scenarios
are available via GitHub: https://github.com/researchwork888/
AVseparation.

1) Scenario 1B (Time-varying Number of Speakers): The
mean scores of all 3 criteria, i.e. SIG, BAK and OVRL, are
shown in Fig. 12, and the results for ANOVA test are given
in Table X. The mean scores and p-values of the OVRL
and BAK criteria suggest that all three estimated sources
achieve good overall speech quality with moderate interference
suppression, and similarly the mean scores and p-values of the
SIG component indicate there is minimal signal degradation or
distortion. Additionally, the spectrograms for each of estimated
signals are presented in Fig. 13. In this scenario, Source 2
enters the scene a few seconds after Source 1, and Source 3
first appears a few seconds after Source 2. Examination of
the spectrograms confirms that the proposed method is able
to detect and track all three sources from the point they each
enter the scene. As a result, the individual signals for each of
the three sources is reconstructed correctly. It is also important
to point out that there are no identity switches in the estimation
of the trajectories of the sources, which is necessary for the
correct reconstruction of the three uninterrupted waveforms.
Overall, the results of this scenario demonstrate that the
proposed method can handle an unknown and time-varying
number of moving sources.

2) Scenario 1C (Loud Background Noise): The mean
scores of all 3 criteria, i.e. SIG, BAK and OVRL, are shown
in Fig. 14, and the results for ANOVA test are given in Table
XI. Additionally, the spectrograms of the obtained signals are
presented in Fig. 15. The results indicate that the proposed
method is able to detect and track Source 1 quite accurately,
and as a consequence, is able to achieve moderate noise
suppression with close to no signal distortion. The onset of the

source at the two second mark is also correctly initiated with
negligible delay, even in the presence of background noise.
This is largely due to the exploitation of the complementary
audio and visual modes. The results indicate that the proposed
method is able to identify the presence, and enhance the speech
signal of the moving speaker, with both a blender and vacuum
cleaner running simultaneously in the background.

Fig. 14: Mean scores for SIG, BAK, and OVRL for the estimated source
signals and original mixture signals evaluated on Scenario 1C.

TABLE XI: One-way ANOVA test between the estimated source signals and
original mixture signals on Scenario 1C.

Source p-value
SIG ↑ BAK ↓ OVRL ↓

1 Proposed 0.841* 0.0097 0.0088
The asterisk (*) denotes values that are above the selected significance
level, i.e. 0.05. (↑ means higher is better while ↓ means lower is better.)

VII. CONCLUSION

This paper proposes a solution for online separation of an
unknown and time-varying number of moving sources, based
on a model-centric approach involving sequential stages of
detection, tracking, and spatial filtering. The solution exploits
simultaneous audio and video measurements, taken from a
single microphone array co-located with a single visual device,
to produce complementary measurements of an active scene.
A labeled random finite set model describes the underlying
statistical relationship between the audio-visual measurements
and the multi-source states, including the inherent multi-
modal space-time permutation uncertainty. A Multi-Sensor
GLMB filter is applied to resolve the permutation problem
and recursively estimate the source trajectories and labels.
A corresponding time-varying set of generalized side-lobe
cancellers then performs online source separation.

The proposed solution is evaluated in a real experimental
setting with up to 3 live and moving human speakers. An abla-
tion study on audio-only data without the visual mode confirms
audibly poor performance due to limited observability with a
single microphone array. With the addition of a co-located
visual sensor, in near-field experiments, we demonstrate that
multi-source separation is possible, despite the limited spatial
coverage of the single microphone array. For far-field ex-
periments, the performance is considerably reduced, but still
maintains consistency in the output. In both near-field and
far-field experiments, the audio-visual approach demonstrably
outperforms the audio-only approach. The proposed combi-
nation of audio-visual modes is easily extended to the case
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Fig. 13: Spectrograms for signals from Scenario 1B. Top row: mixtures; middle row: estimated signals; bottom row: ground-truth signals.

Fig. 15: Spectrograms for signals from Scenario 1C. Top row: mixtures;
middle row: estimated signals; bottom row: ground-truth signals.

of multiple visual devices with multiple microphone arrays,
which should significantly improve separation performance.
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