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Multi-Sensor Multi-Object Tracking with the
Generalized Labeled Multi-Bernoulli Filter

Ba-Ngu Vo, Ba-Tuong Vo, and Michael Beard

Abstract—This paper proposes an efficient implementation of
the multi-sensor generalized labeled multi-Bernoulli (GLMB)
filter. Like its single-sensor counterpart, such implementation
requires truncating the GLMB sum. However the single-sensor
case requires solving 2-D ranked assignment problems whereas
the multi-sensor case require solving multi-dimensional ranked
assignment problems, which are NP-hard. The proposed im-
plementation exploits the GLMB joint prediction and update
together with a new technique for truncating the GLMB filtering
density based on Gibbs sampling. The resulting algorithm has a
quadratic complexity in the number of hypothesized objects and
linear in the total number of measurements from all sensors.

Index Terms—State estimation, Filtering, Random finite sets,
Multi-dimensional assignment, Gibbs sampling

I. INTRODUCTION

The objective of multi-object tracking is to jointly estimate
the number of objects and their trajectories from sensor data
[1], [2], [3], [4]. Amongst a host of algorithms, Joint Prob-
abilistic Data Association (JPDA) [1], Multiple Hypotheses
Tracking (MHT) [2], and Random Finite Set (RFS) [3], [4] are
regarded as the three main paradigms for multi-object track-
ing. Using data from multiple sensors, in principle, reduces
uncertainty on the number of objects and their states, yielding
improved multi-object tracking performance [1], [2], [3], [4].
For a comprehensive overview of multi-sensor multi-object
tracking techniques, we refer the reader to [5] and references
therein. In this work, we are interested in multi-object filters
that compute estimates on-line as data arrives, since these are
well-suited for time-critical applications.

Many of the recent multi-sensor multi-object filters use
the random finite set (RFS) framework [3], [4]. One of the
few exceptions is a JPDA type filter that is quadratic in
the number of targets, linear in the number of sensors, and
linear in the number of measurements per sensor [6]. Multi-
sensor versions of RFS-based filters such as the Probability
Hypothesis Density (PHD) [7], Cardinalized PHD (CPHD)
[8], multi-Bernoulli [3], [9], have been developed in [4],
[10], and recently in [11] for hybrid multi-Bernoulli. These
solutions have numerical complexities that are combinatorial
in the number of measurements, and (with the exception
of the hybrid multi-Bernoulli filter) linear in the number of
objects. The earliest and conceptually simplest approximate
multi-sensor PHD, CPHD (and multi-Bernoulli) filters are the
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heuristic “iterated corrector” versions that apply single-sensor
updates, once for each sensor in turn [12], [13]. This approach
yields final solutions that depend on the order in which
the sensors are processed. Principled approximations of the
multi-sensor PHD and CPHD filters that are computationally
tractable, and independent of sensor order have been proposed
in [4] (Section 10.6). However, this approach and the heuristic
“iterated corrector” involve two levels of approximations since
the exact multi-sensor PHD, CPHD and multi-Bernoulli filters
are in fact approximations of the Bayes multi-sensor multi-
object filter. Note that the multi-object filters discussed thus
far are not trackers in the sense that only the current states are
estimated, not their trajectories.

An analytic Bayes multi-object filter that estimates multi-
object trajectories is the Generalized Labeled Multi-Bernoulli
(GLMB) filter [14], [15]. The major hurdle in the multi-
sensor GLMB filter implementation is the NP-hard multi-
dimensional assignment problem. In principle, the “iterated
corrector” strategy would yield the exact solution if all GLMB
components are kept. However in practice truncation is per-
formed at each single-sensor update, and an extremely large
number of GLMB components at each single-sensor update
would be needed, even if the final GLMB filtering density only
contains a small number of significant components. Worse,
insignificant components after one single-sensor update, which
could become significant in the final GLMB filtering density,
are discarded and cannot be recovered. An implementation
of the two-sensor GLMB filter was developed in [16] using
Murty’s algorithm with a complexity of O((M (1)M (2))4),
where M (s) is the number of measurements from sensor s. A
multi-sensor version of an approximate GLMB filter, known
as the marginalized GLMB filter, was proposed in [17]. This
solution has a complexity of O(

∏V
s=1(M (s))4), where V is

the number of sensors. While this approach is scalable in
the number of sensors [17], it still involves two levels of
approximations: the truncation of the GLMB density; and the
functional approximation of the truncated GLMB density.

The multi-sensor multi-object filters discussed above were
developed for a centralized fusion architecture, where mea-
surements are sent to a central node for processing. Alter-
natively, in a decentralized setting, estimates and/or statistics
computed from individual sensors are fused together [18], [19].
Several decentralized multi-sensor fusion algorithms based
on Generalized Covariance Intersection (GCI) [20] and its
variants have been proposed for the PHD/CPHD filters [21],
[23], [22], [24] and multi-Bernoulli filter [25], [26], [27], [28].
For multi-object tracking filters, GCI fusion rules for labeled
multi-Bernoulli (LMB) and marginalized GLMB were derived
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and applied to distributed multi-sensor multi-object tracking
via a sensor network in [29]. In [30] a new fusion rule for
LMB was proposed by modifying the GCI fusion rule in [29]
based on a Cauchy-Schwarz divergence criterion. However,
tracking performance of GCI fusion can be sensitive to label
inconsistencies between nodes, quantified by the so-called
label inconsistency indicator [31]. A remedy was developed
in [32] by seeking the best matching labels (that minimize
the label inconsistency indicator) and performing label-wise
GCI fusion with the matched multi-object densities. While
fusion of multi-object densities alleviates the computational
complexity associated with the centralized multi-sensor update
and facilitates distributed multi-object tracking, the relation-
ship between the fused density and the multi-sensor updated
density is difficult to establish.

In this paper we present an efficient implementation of
the (centralized) multi-sensor GLMB filter with the same
quadratic complexity in the number of hypothesized objects
as [16], [17], but linear in the total number of measure-
ments from all sensors. The key lies in efficient solutions to
multi-dimensional assignment problems. Unlike the multi-scan
GLMB [33], in multi-sensor GLMB the multi-dimensional
assignment problems can be solved by exploiting certain
structural properties and suitable adaptation of the 2-D as-
signment Gibbs sampler of [34]. This approach generalizes
our preliminary result in [35], and is generally quadratic in
the number of hypothesized objects and linear in the product
of the number of measurements. More importantly, we further
develop a very practical and scalable solution that drastically
reduces the complexity to being linear in the total number of
measurements across the sensors.

The remainder of this article is organized as follows. Section
II presents the background on GLMB filtering and its multi-
sensor extension. In section III we present our proposed Gibbs
sampling based approach to the truncation of the multi-sensor
GLMB filtering density, and the resulting implementation of
the multi-sensor GLMB filter. Numerical studies are presented
in Section IV, followed by some concluding remarks in
Section V.

II. BACKGROUND

This section summarizes the multi-object state space models
and the GLMB filter. Adhering to the single-sensor GLMB
filter implementation in [34] we adopt the following notation;
the inner product 〈f, g〉 ,

∫
f (x) g (x) dx, the list of variables

Xm:n , Xm, Xm+1, . . . , Xn, and the generalized Kroneker
delta that takes arbitrary arguments

δY [X] ,

{
1, if X = Y

0, otherwise
.

For a given set A, we denote its indicator function by 1A (·),
and the class of finite subsets of A by F (A). For a finite set
X , we denote its cardinality (or number of elements) by |X|,
and the product

∏
x∈X f (x) by fX , with f∅ = 1.

A. Multi-Object State
An existing object at time k is represented by a vector xk

in some state space X, and a unique label `k consisting of

an ordered pair (t, α), where t is the time of birth and α is
the index of individual objects born at the same time [14].
The label space for all objects up to time k (including those
born prior to k) is the disjoint union Lk =

⊎k
t=0 Bt, where Bt

denotes the label space for objects born at time t, (note that
Lk = Lk−1 ] Bk). Formally, the labeled state of an object at
time k is a vector xk = (xk, `k) ∈ X× Lk, and the trajectory
of an object is a sequence of consecutive labeled states with
a common label [14].

Suppose that there are Nk objects at time k, with states
xk,1, . . . ,xk,Nk

, in the context of multi-object tracking, the
collection of states, referred to as the multi-object state, is
naturally represented as a finite set

Xk = {xk,1, . . . ,xk,Nk
} ∈ F (X× Lk) .

We denote the (set of) labels of X , i.e. {` : (x, `) ∈X}, by
L (X). Note that since no two objects in a multi-object state
have the same label, δ|X| (|L (X)|) = 1. Hence, we define the
distinct label indicator as

∆ (X) , δ|X| [|L (X)|] .

In what follows, we use the convention that single-object
states are represented by lower-case letters (e.g. x, x), while
multi-object states are represented by upper-case letters (e.g.
X , X), symbols for labeled states and their distributions are
bold-faced to distinguish them from unlabeled ones (e.g. x,
X , π, etc.), spaces are represented by blackboard bold (e.g.
X, Z, L, N, etc.). Also, for notational compactness, we drop
the subscript k for the current time, the next time is indicated
by the subscript ‘+’.

B. Standard Multi-Object Dynamic Model
Given the multi-object state X (at time k), each (x, `) ∈

X either survives with probability PS (x, `) and evolves to a
new state (x+, `+) (at time k + 1) with probability density
f+ (x+|x, `) δ` [`+] or dies with probability 1−PS (x, `). The
set B+ of new objects (born at time k + 1) is distributed
according to the labeled multi-Bernoulli (LMB) density1

fB,+(B+)=∆(B+)
[
1B+rB,+

]L(B+)
[1−rB,+]

B+−L(B+)
p
B+

B,+,

where rB,+ (`) is the probability that a new object with label
` is born, and pB,+ (·, `) is the distribution of its kinematic
state [14]. The multi-object state X+ (at time k + 1) is the
superposition of surviving objects and new born objects. Using
the standard assumption that, conditional on X , objects move,
appear and die independently of each other, the expression for
the multi-object transition density f+ is given by [14], [15]

f+(X+|X)=fS,+(X+∩(X× L) |X)fB,+(X+−(X× L))

where

fS,+(W |X) = ∆(W ) ∆(X)1L(X)(L (W ))[Φ (W ; ·)]X

Φ (W ;x, `) =
(
1− 1L(W )(`)

)
(1− PS (x, `))

+
∑

(x+,`+)∈W

δ` [`+]PS (x, `)f+(x+|x, `) .

1Note that in this work we use Mahler’s set derivatives for multi-object
densities [3], [8]. While these are not actual probability densities, they are
equivalent to probability densities relative to a certain reference measure [36].
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C. Standard Multi-Object Observation Model

Suppose that there are V sensors, numbered from 1 to V .
For a given multi-object state X , each x ∈ X is either
detected by sensor s ∈ {1 : V }, with probability P (s)

D (x) and
generates a detection z(s) ∈ Z(s) with likelihood g(s)

D

(
z(s)|x

)
or missed with probability 1− P (s)

D (x). The multi-object ob-
servation from sensor s is the superposition of the observations
from detected objects and Poisson clutter with intensity κ(s).
The standard multi-object likelihood function for sensor s is
given by [14], [15]

g(s)(Z(s)|X)∝
∑

θ(s)∈Θ(s)

1Θ(s)(L(X))(θ
(s))
[
ψ

(s,θ(s)◦L(·))
Z(s) (·)

]X
(1)

where: Θ(s) is the set of positive 1-1 maps θ(s) : L →{
0 :
∣∣Z(s)

∣∣}, i.e. maps such that no two distinct arguments
are mapped to the same positive value; Θ(s) (I) is the subset
of Θ(s) with domain I; θ(s)◦L (x) = θ(s)(L (x)); and

ψ
(s,j)

{z1:M(s)} (x) =

P
(s)
D (x)g(s)(zj |x)

κ(s)(zj)
, j = 1:M (s)

1− P (s)
D (x) , j = 0

. (2)

The map θ(s) specifies that object ` generates detection zθ(`) ∈
Z(s), with undetected objects assigned to 0. The positive 1-1
property means that θ(s) is 1-1 on the set of detected labels,
i.e.

{
` : θ(s) (`) > 0

}
, and ensures that any detection in Z(s)

is assigned to at most one object.
Using the following abbreviations

Z , (Z(1), . . . , Z(V )), (3)

Θ , Θ(1) × · · · ×Θ(V ), (4)

Θ (I) , Θ(1) (I)× · · · ×Θ(V ) (I) , (5)

θ , (θ(1), . . . , θ(V )), (6)

1Θ(I) (θ) ,
V∏
s=1

1Θ(s)(I)(θ
(s)), (7)

ψ
(j(1),...,j(V ))
Z (x, `) ,

V∏
s=1

ψ
(s,j(s))

Z(s) (x, `) , (8)

and the standard assumption that the sensors are conditionally
independent2, the multi-sensor likelihood is given by

g (Z|X) =

V∏
s=1

g(s)(Z(s)|X)

∝
∑
θ∈Θ

1Θ(L(X)) (θ)
[
ψ

(θ◦L(·))
Z (·)

]X
, (9)

which has the same form as its single-sensor counterpart. The
multi-sensor association map θ is said to be positive 1-1, since
all constituent θ(1), . . . , θ(V ) are positive 1-1.

2More concisely, given the (multi-object) state, the uncertainty (due to mea-
surement noise, misdetections, and clutter) from each sensor is independent
from the others. This condition is valid when the sensors do not interfere
nor influence each other in the process of obtaining the measurements or
detections.

D. Generalized Label Multi-Bernoulli (GLMB)

A GLMB density, or simply GLMB, is a labeled multi-
object density of the form3

π (X) = ∆ (X)
∑
I,ξ

ω(I,ξ)δI [L (X)]
[
p(ξ)
]X

, (10)

where: I ∈ F (L); each ξ ∈ Ξ represents a history of (multi-
sensor) association maps, i.e. ξ = (θ1:k); each p(ξ) (·, `) is a
probability density on X; and each ω(I,ξ) is non-negative with∑

I,ξ

ω(I,ξ) = 1.

The cardinality distribution of a GLMB is given by

Pr (|X|=n) =
∑
I,ξ

δn [|I|]ω(I,ξ),

while the existence probability and probability density for the
track with label ` ∈ L are respectively given by

r (`) =
∑
I,ξ

1I (`)ω(I,ξ),

p (x, `) =
1

r (`)

∑
I,ξ

1I (`)ω(I,ξ)p(ξ) (x, `) .

Various multi-object estimators for GLMBs are discussed
in [14], [15]. The most popular is a suboptimal version of the
marginal multi-object estimator [3], which: first, determines
the pair (L, ξ) with the highest weight ω(L,ξ) such that |L|
coincides with the mode (most probable) cardinality; and
second, compute the state estimate for each object (with label)
` ∈ L from p(ξ) (·, `), e.g. the mode or the mean.

Remark: For GLMBs with ξ = (θ1:k), this estimator
encompasses the entire trajectory of each object, because for
each ` = (t, α) ∈ L the initial state distribution is given
by pB,t(·, `) in the LMB birth model, and the sequence of
associated measurements is given by θ1:k(`). Such information
is sufficient to determine the joint density of the states along
the object’s trajectory. Moreover, all marginals of this joint
density can be computed recursively from p(ξ) (·, `) using the
forward-backward algorithm.

E. Multi-Sensor GLMB Recursion

All information on the multi-object state is captured in the
multi-object filtering density, which can be propagated forward
recursively by the (multi-object) Bayes filter [3], [4]. Usually
this recursion is decomposed into two separate steps, namely
prediction and update [3], [4]. This work employs the joint
prediction and update form that combines these two steps into
a single expression

π+(X+) ∝ g (Z+|X+)

∫
f+(X+|X)π (X) δX, (11)

where: π and π+ denote the multi-object filtering densities at
times k and k + 1, respectively; while the integral is the set
integral given in [14]. Note that for notational compactness we
have omitted the measurement histories from these densities.

3In fact this is the δ-form of the GLMB, known as the δ-GLMB. In this
paper we only use this form and hence, the prefix δ is omitted.
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The GLMB filter is an analytic solution to the Bayes multi-
object filter (11) under the standard multi-object dynamic and
observation models [15]. Since the multi-sensor likelihood
function has the same form as the single-sensor case, it follows
from [34] that given the filtering density (10) at time k, the
filtering density at time k + 1 is given by

π+(X)∝∆(X)
∑

I,ξ,I+,θ+

ω(I,ξ)ω
(I,ξ,I+,θ+)
Z+

δI+ [L(X)]
[
p

(ξ,θ+)
Z+

]X
(12)

where I ∈ F (L), ξ ∈ Ξ, I+ ∈ F (L+), θ+ ∈ Θ+ (I+), and

ω
(I,ξ,I+,θ+)
Z+

= 1Θ+(I+) (θ+)
[
1− P̄ (ξ)

S

]I−I+ [
P̄

(ξ)
S

]I∩I+
× [1− rB,+]

B+−I+ r
B+∩I+
B,+

[
ψ̄

(ξ,θ+))
Z+

]I+
(13)

P̄
(ξ)
S (`) =

〈
p(ξ) (·, `) , PS (·, `)

〉
(14)

ψ̄
(ξ,θ+)
Z+

(`+) =
〈
p̄

(ξ)
+ (·, `+) , ψ

(θ+(`+))
Z+

(·, `+)
〉

(15)

p̄
(ξ)
+ (x+, `+) = 1L(`+)

〈
PS(·, `+)f+(x+|·, `+) , p(ξ)(·, `+)

〉
P̄

(ξ)
S (`+)

+ 1B+
(`+) pB,+ (x+, `+) (16)

p
(ξ,θ+)
Z+

(x+, `+) =
p̄

(ξ)
+ (x+, `+)ψ

(θ+(`+))
Z+

(x+, `+)

ψ̄
(ξ,θ+)
Z+

(`+)
. (17)

The number of components in the GLMB filtering density
grows exponentially with time, and needs to be truncated at
every time step. Truncation by retaining components with the
largest weights minimizes the L1 approximation error [15],
and can be formulated as a multi-dimensional assignment
problem [37]. This problem is NP-hard for more than two
dimensions. A multi-dimensional assignment problem with 5
dimensions and 20 measurements per dimension is equivalent
to an integer linear programming problem with 3.2 million
variables, see for example [38] and the references therein.

III. MULTI-SENSOR GLMB FILTER IMPLEMENTATION

This section presents efficient implementations of the multi-
sensor GLMB filter based on truncation of the filtering density
(12). Following [34], we consider truncation by sampling the
GLMB components (I, ξ, I+, θ+) from a discrete probability
distribution π. Specifically, we consider

π (I, ξ, I+, θ+) ∝ ω(I,ξ)π (I+, θ+|I, ξ) , (18)

where, for a given (I, ξ), π (I+, θ+|I, ξ) is approximately pro-
portional4 to ω(I,ξ,I+,θ+)

Z+
. The rationale is that π (I, ξ, I+, θ+)

would then be approximately proportional to the weight
ω(I,ξ)ω

(I,ξ,I+,θ+)
Z+

of component (I, ξ, I+, θ+) in the GLMB
filtering density (12), thereby ensuring that sampling from
π (I, ξ, I+, θ+) would generate high-weight components.

To draw a sample from (18), we first sample (I, ξ)
from π (I, ξ) ∝ ω(I,ξ), and second sample (I+, θ+) from
π (I+, θ+|I, ξ). The first operation is straight forward, the
challenge lies in the second, which we address in subsections

4We say that two (unnormalized) distributions are approximately propor-
tional when their normalized versions are approximately equal.

III-B and III-C via Gibbs sampling. Details of the multi-sensor
GLMB filter implementation are outlined in subsection III-D.

To facilitate the Gibbs sampling formulation, we first start
with a convenient representation of association maps in the
following subsection.

A. Extended Association Map
Recall the single-sensor case [34], where there are M

measurements. Given a component (I, ξ), the pair (I+, θ+)
is represented by the extended association map

γ : I ] B+ → {−1 : M} ,

defined by: γ (`) = θ+(`), if ` ∈ I+, i.e. a live label;
and γ (`) = −1, if ` is a dead/unborn label. An obvious
generalization of extended association map to the multi-sensor
case (where each sensor has M (s) measurements) is

γ : I ] B+ → {−1 : M (1)} × · · · × {−1 : M (V )}.

defined by γ (`) = (γ(1) (`) , . . . , γ(V ) (`)), where: γ(s) (`) =

θ
(s)
+ (`), if ` ∈ I+; and γ(s) (`) = −1, otherwise. However,

this representation allows pathological cases, e.g. extended
association maps with γ (`) = (−1, 1) in a two-sensor
scenario, meaning that label ` is dead/unborn but generated
measurement 1 in sensor 2. Hence, additional constructs are
needed to design Gibbs samplers that do not generate such
pathological extended association maps.

This problem can be avoided altogether by representing each
pair (I+, θ+) ∈ F (L+) × Θ+ (I+) of a given component
(I, ξ), as the extended association map

γ , (γ(1), . . . , γ(V )) : I ] B+ → {−1} V ] Λ(1:V ),

where

γ (`) ,

{
(θ

(1)
+ (`) , . . . , θ

(V )
+ (`)), if ` ∈ I+

(−1, . . . ,−1) otherwise
,

Λ(s:t) , {0 : M (s)} × · · · × {0 : M (t)}.

Note that γ (`) is a V -tuple that either belongs to Λ(1:V ) when
` is a live label, or {−1} V when ` is a dead/unborn label, in
which case γ(s) (`) = −1 for all s ∈ {1 : V }. Given any γ
in the set Γ of all positive 1-1 extended association maps, we
can recover I+ and θ+ : I+ → Λ(1:V ), respectively, by

I+ = {` ∈ I]B+ : γ(`) ∈ Λ(1:V )} and θ+ (`) = γ (`) . (19)

Thus, there is a 1-1 correspondence between the spaces
Θ+ (I+) and Γ, moreover

1Γ (γ) = 1Θ+(I+) (θ+) .

Hereon, we enumerate I ] B+ = {`1:P }, and abbreviate

γ(s)
n , γ(s) (`n) ∈ {−1 : M (s)}
γn , (γ(1)

n , . . . , γ(V )
n ) ∈ {−1} V ] Λ(1:V ),

for n ∈ {1 : P}, so that an extended association map γ can
be represented as a P × V array in ({−1}V ] Λ(1:V ))P ,

γ =


γ1

γ2

...
γP

 =


γ

(1)
1 γ

(2)
1 · · · γ

(V )
1

γ
(1)
2 γ

(2)
2 · · · γ

(V )
2

...
...

. . .
...

γ
(1)
P γ

(2)
P · · · γ

(V )
P

 . (20)
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The positive 1-1 property means that for each s ∈ {1 : V }
there are no distinct i, j with γ(s)

i = γ
(s)
j > 0.

Similar to the single-sensor case, assuming that for each `
in I ] B+, the expected probabilities P̄ (ξ)

S (`) ∈ (0, 1) and
P̄

(s,ξ)
D (`) ,

〈
P

(s)
D (·, `) , p̄(ξ)

+ (·, `)
〉
∈ (0, 1), then it follows

from (13) and (19) that

ω
(I,ξ,I+,θ+)
Z+

= 1Γ (γ)

P∏
n=1

ηn (γn) (21)

where

ηn(j(1:V )) , (22)
1− P̄ (ξ)

S (`n) , `n ∈ I, j(1:V ) ∈ {−1}V

P̄
(ξ)
S (`n) ψ̄

(ξ,j(1:V ))
Z+

(`n) , `n ∈ I, j(1:V ) ∈ Λ(1:V )

1− rB,+(`n) , `n ∈ B+, j
(1:V ) ∈ {−1}V

rB,+(`n) ψ̄
(ξ,j(1:V ))
Z+

(`n) , `n ∈ B+, j
(1:V ) ∈ Λ(1:V )

ψ̄
(ξ,j(1:V ))
Z+

(`n) =
〈
p̄

(ξ)
+ (·, `n) , ψ

(j(1:V ))
Z+

(·, `n)
〉

(23)

The assumptions on the expected survival and detection prob-
abilities, P̄ (ξ)

S (`) and P̄
(s,ξ)
D (`), eliminate trivial and ideal

sensing scenarios, as well as ensuring ηn(j(1:V )) > 0. Note
that ηn(j(1:V )) depends on the given (I, ξ) and Z+, which
have been omitted for compactness.

Remark: In the single-sensor case, γ is a P-tuple, and
GLMB truncation requires solving 2-D assignment problems
[34]. In the multi-sensor case, γ is a P × V array, and hence
GLMB truncation would require solving multi-dimensional
assignment problems. Nonetheless, these problems can be
solved by adapting the 2-D assignment Gibbs sampler of
[34], and treating the rows of γ (which are elements of
{−1}V ] Λ(1:V )) in the same way as the entries of γ for
the single-sensor case (which are elements of {−1 : M}).
In general, a multi-dimensional assignment problem may not
necessarily be solved by the 2-D assignment Gibbs sampler.
However, this is possible for multi-sensor assignment because
for any live label there is no constraint between the columns of
γ (representing the sensors). In contrast, the multi-dimensional
assignment problems for multi-scan GLMB truncation have
constraints on the columns (representing time) [33], and the
2-D assignment Gibbs sampler is no longer applicable.

B. GLMB Truncation via Gibbs Sampling
Recall that to generate high-weight components via sam-

pling from (18), we first sample (I, ξ) from π (I, ξ) ∝ ω(I,ξ),
and second sample (I+, θ+) from a distribution approximately
proportional to ω

(I,ξ,I+,θ+)
Z+

. This subsection presents an ap-
proach for the second sampling step.

The extended association map representation (20) treats
each(I+, θ+) as a P×V array in the space ({−1}V ]Λ(1:V ))P .
Hence, sampling (I+, θ+) from a distribution approximately
proportional to ω

(I,ξ,I+,θ+)
Z+

amounts to sampling from a
distribution on ({−1}V ] Λ(1:V ))P that is approximately
proportional to (21). Additionally, keeping in mind that all
generated samples must be positive 1-1, we restrict ourselves
to distributions of the same form as (21). Specifically, we
consider distributions of the form

π (γ) ∝ 1Γ (γ)

P∏
n=1

ϑn (γn) , (24)

where each ϑn : {−1}V ] Λ(1:V ) → [0,∞) is chosen to
approximate ηn, including the special case ϑn = ηn.

Gibbs sampling for a stationary distribution π requires
constructing a Markov chain with transition kernel [39], [40]

π (γ′|γ) =

P∏
n=1

πn
(
γ′n|γ′1:n−1, γn+1:P

)
,

where πn
(
γ′n|γ′1:n−1, γn+1:P

)
∝ π (γ′1:n, γn+1:P ). In other

words, given the current state γ of the chain, the components
γ′1, . . . , γ

′
P of the next state γ′ are distributed according to the

sequence of conditionals

π1 (γ′1|γ2:P ) ∝ π (γ′1, γ2:P )

...

πn
(
γ′n|γ′1:n−1, γn+1:P

)
∝ π (γ′1:n, γn+1:P )

...

πP
(
γ′P |γ′1:P−1

)
∝ π (γ′1:P ) .

Proposition 1. Let n̄ = {1 : P} − {n}, and γn̄ =
(γ1:n−1, γn+1:P ) ∈ ({−1} V ] Λ(1:V ))P−1 be positive 1-1.
Then, the n-th conditional of the stationary distribution (24)
is given by

πn(j(1:V )|γn̄) ∝ ϑn(j(1:V ))

V∏
s=1

β(s)
n (j(s)|γ(s)

n̄ ) (25)

for j(1:V ) ∈ {−1} V ] Λ(1:V ), where

β(s)
n (j(s)|γ(s)

n̄ ) = 1− 1{1:M(s)}
⋂
{γ(s)

1:n−1,γ
(s)
n+1:P }

(j(s)). (26)

The proof is given in Appendix VI-A.
The above result shows that sampling from the conditional

πn (·|γn̄) amounts to sampling from a categorical distribution
on {−1} V ] Λ(1:V ). Moreover, given a positive 1-1 γn̄, the
conditional πn (·|γn̄) only generates γn such that γ is positive
1-1, otherwise the product in (25) vanishes and πn (γn|γn̄) =
0. Hence, starting with a positive 1-1 γ, all iterates of the
Gibbs sampler, summarized in Algorithm 1, are also positive
1-1. Note from (25), (26) that πn(j(1:V )|γn̄) ∝ ϑn(j(1:V )) for
j(1:V ) ∈ {−1} V , and hence in Algorithm 1 we only need the
for-loop over j(1:V ) ∈ Λ(1:V ).

Further, as the number of iterates, T , tends to infinity the
samples generated by Algorithm 1 are distributed according
to the stationary distribution.

Proposition 2. If ϑn > 0 on {−1} V ]Λ(1:V ) for each n, then
starting from any positive 1-1 state, the Gibbs sampler defined
by the family of conditionals (25) converges to the stationary
distribution (24) at an exponential rate. More concisely, let πj

denote the j-th power of the transition kernel, then

max
γ,γ′∈Γ

(∣∣πj (γ′|γ)− π (γ′)
∣∣) ≤ (1− 2β) b

j
2c,

where β , minγ,γ′∈Γ π
2 (γ′|γ) > 0 is the least likely 2-step

transition probability.
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Algorithm 1: Gibbs (Optimal)

Inputs: T, V, γ(1) = [γ
(1,s)
n ], ϑ = [ϑn(j(1:V ))]

Outputs: γ(1), . . . , γ(T )

P = size(ϑ, 1), c = −1 ∗ ones(1, V ),
for s = 1 : V
M (s) = size (ϑ, 1 + s)− 2

end for
for j(1:V ) = zeros(1, V ) : [M (1:V )]
c =

[
c;
[
j(1:V )

]]
end for
[pn(j(1:V ))] = [ϑn(j(1:V ))]
for t = 2 : T
φ(t) = [ ]
for n = 1 : P

for j(1:V ) = zeros(1, V ) : [M (1:V )]

pn(j(1:V )) = pn(j(1:V ))
V∏
s=1

β
(s)
n (j(s)|φ(t,s)

1:n−1, γ
(t−1,s)
n+1:P )

end for

φ
(t)
n ∼ Categorical(c, pn), φ(t) = [φ(t);φ

(t)
n ]

end for
γ(t) = φ(t)

end for

The proof follows along the same lines of arguments as
Proposition 4 in [34].

Similar to the single-sensor case, increased efficiency can
be achieved by using annealing or tempering techniques to
modify the stationary distribution so as to induce the Gibbs
sampler to seek more diverse samples [41], [42].

1) Optimal Stationary Distribution: Since each ϑn in the
stationary distribution (24) should be chosen to approximate
ηn, the optimal stationary distribution is obtained by setting

ϑn (γn) = ηn (γn) . (27)

In this case, the conditional πn (·|γn̄) is a categorical distri-
bution with 1 +

∏V
s=1(M (s) + 1) categories. Hence, sampling

πn (·|γn̄) in Algorithm 1 requires at least 1+
∏V
s=1(M (s) +1)

memory locations. For example, 5 sensors with 15 measure-
ments per sensor requires over 165 ' 1 million memory
locations. Moreover, Algorithm 1 incurs a complexity of
O(TP

∏V
s=1M

(s)), since sampling from a categorical distri-
bution is linear in the number of categories [43]. While this is
orders of magnitude cheaper than Murty-based solutions [17],
[16] such computational load is still prohibitive.

Sampling from the categorical distribution in Algorithm
1 can be replaced by a single iteration of the Metropolis-
Hastings algorithm on the same stationary distribution. Other
alternatives include adaptive rejection sampling [44], [45],
[46]. However, the resultant samplers take longer to carry
out each iteration, and much longer to converge because the
conditionals have been replaced by their approximations.

C. Markovian Stationary Distribution

This subsection introduces suboptimal stationary distribu-
tions that drastically reduces memory requirement/complexity.

Sampling γn = j(1:V ) directly from a distribution
on {−1} V ] Λ(1:V ), as per the optimal stationary dis-
tribution, incurs large memory and computational costs.
One strategy to circumvent such problems is to sample
j(1), ..., j(V ) individually from respective distributions on{
−1 : M (1)

}
,...,
{
−1 : M (V )

}
, provided that these distribu-

tions are inexpensive to compute. This can be accomplished
by imposing the Markov property on ϑn in (24), i.e.

ϑn(j(1:V )) =

V∏
s=2

ϑ(s)
n (j(s)|j(s−1))ϑ(1)

n (j(1)) (28)

where ϑ(1)
n :
{
−1:M (1)

}
→ [0,∞), and for s∈{2:V }, j(s−1)∈{

−1:M (s−1)
}

, ϑ(s)
n (·|j(s−1)) :

{
−1:M (s)

}
→ [0,∞).

Effectually, we are considering a so-called Markovian sta-
tionary distribution

π (γ) ∝ 1Γ (γ)

P∏
n=1

(
V∏
s=2

ϑ(s)
n (γ(s)

n |γ(s−1)
n )

)
ϑ(1)
n (γ(1)

n ), (29)

whose conditionals have the Markov property as shown in the
following Proposition (see Appendix VI-B for proof). Note
that when each ϑ

(s)
n (·|j(s−1)) is independent of j(s−1), the

resultant ϑn is not a distribution on {−1} V ]Λ(1:V ) (because
there is no mechanism to ensure that if j(1) is negative/non-
negative then j(2:V ) are also negative/non-negative), and hence
(29) would not be a distribution on ({−1} V ] Λ(1:V ))P .

Proposition 3. If ϑ(1)
n , ϑ(s)

n (·|·), s ∈ {2 : V } are such that
(29) is a distribution on ({−1} V ] Λ(1:V ))P , then its n-th
conditional, given a positive 1-1 γn̄ = (γ1:n−1, γn+1:P ) in
({−1} V ] Λ(1:V ))P−1, is

πn(j(1:V )|γn̄) =

V∏
s=2

π(s)
n (j(s)|j(s−1), γn̄)π(1)

n (j(1)|γn̄) (30)

where

π(1)
n (j(1)|γn̄) =

K
(2)
n (j(1))β

(1)
n (j(1)|γ(1)

n̄ )ϑ
(1)
n (j(1))∑M(1)

j=−1K
(2)
n (j)β

(1)
n (j|γ(1)

n̄ )ϑ
(1)
n (j)

(31)

π(s)
n (j(s)|j(s−1), γn̄) = (32)1, j(s), j(s−1) = −1

K(s+1)
n (j(s))β(s)

n (j(s)|γ(s)
n̄ )ϑ(s)

n (j(s)|j(s−1))

K
(s)
n (j(s−1))

, j(s), j(s−1) > −1

K(s)(j(s−1)) =

M(s)∑
j=0

K(s+1)
n (j)β(s)

n (j|γ(s)
n̄ )ϑ(s)

n (j|j(s−1)) (33)

for s ∈ {2:V }, with K(V+1)
n (j(V )) = 1.

Thus, sampling j(1:V ) from the n-th conditional, i.e. (30),
of a Markovian stationary distribution, can be achieved by

j(1) ∼ π(1)
n (·|γn̄),

j(2) ∼ π(2)
n (·|j(1), γn̄),

...

j(V ) ∼ π(V )
n (·|j(V−1), γn̄).



PREPRINT: IEEE TRANS. SIGNAL PROCESSING, VOL. 67, NO. 23, PP. 5952-5967, 2019. 7

This strategy only requires 2 + maxsM
(s) memory locations

to store the categories, instead of 1 +
∏V
s=1(1 +M (s)) as per

the optimal stationary distribution. This means, for 5 sensors
with 15 measurements per sensor, we only need 17 memory
locations instead of over a million.

While the memory requirement has been addressed, sam-
pling the n-th conditional is not necessarily scalable. For each
s ∈ {2 : V } we need to compute 2 + M (s−1) normaliz-
ing constants K

(s)
n (j(s−1)), j(s−1) ∈ {−1 : M (s−1)} with

O(M (s)) complexity each, which incurs a net complexity of
O(M (s−1)M (s)). Hence, sampling the n-th conditional gener-
ally incurs O(

∑V
s=2M

(s−1)M (s)) complexity, since sampling
a categorical distribution is linear in the number of categories.

Nonetheless, the following special case requires only one
normalizing constant for each s (see Appendix VI-C for
proof), thereby achieving a complexity of O(

∑V
s=1M

(s)).

Corollary 4. In addition to the premises of Proposition 3, if
the stationary distribution (29) is minimally-Markovian, i.e.

ϑ(s)
n (j(s)|j(s−1)) = ϑ(s)

n (j(s))1{−1}2]Λ(s−1:s)(j(s−1), j(s)),
(34)

then (31) and (32) reduce to

π(1)
n (j(1)|γn̄) =

1− Pn(Λ(1:V )), j(1) =−1
Pn(Λ(1:V ))β(1)

n (j(1)|γ(1)
n̄ )ϑ(1)

n (j(1))

Υ
(1)
n

, j(1)>−1

(35)

π(s)
n (j(s)|j(s−1), γn̄) =

1, j(s), j(s−1) =−1
β(s)
n (j(s)|γ(s)

n̄ )ϑ(s)
n (j(s))

Υ
(s)
n

, j(s), j(s−1)>−1

(36)
for s ∈ {2 : V }, where

Υ(s)
n ,

M(s)∑
j(s)=0

β(s)
n (j(s)|γ(s)

n̄ )ϑ(s)
n (j(s)) (37)

Pn(Λ(1:V )) ,

∏V
s=1 Υ

(s)
n∏V

s=1 ϑ
(s)
n (−1) +

∏V
s=1 Υ

(s)
n

. (38)

The pseudocode for Gibbs sampling based on minimally-
Markovian stationary distributions is given in Algorithm 2,
MM-Gibbs, which has a complexity of O(TP

∑V
s=1M

(s)).
In general, the conditionals, and hence performance depend
on the sensor ordering, except in the following special case.

1) Suboptimal Stationary Distribution: Again, recall that
each ϑn should be chosen to approximate ηn. This can be
achieved with a minimally-Markovian stationary distribution
by setting ϑ(s)

n (j(s)) to

η(s)
n (j(s)) , (39)

(
1− P̄ (ξ)

S (`n)
)δ1[s]

, `n∈I, j(s) =−1(
P̄

(ξ)
S (`n)

)δ1[s]

ψ̄
(ξ,s,j(s))
Z

(s)
+

(`n), `n∈I, j(s)∈Λ(s)

(1− rB,+(`n))
δ1[s]

, `n∈B+, j
(s) =−1

(rB,+(`n))
δ1[s]

ψ̄
(ξ,s,j(s))
Z

(s)
+

(`n), `n∈B+, j
(s)∈Λ(s)

where

ψ̄
(ξ,s,j(s))
Z

(s)
+

(`n) ,
〈
p̄

(ξ)
+ (·, `n) , ψ

(s,j(s))
Z

(s)
+

(·, `n)
〉
, (40)

Algorithm 2: MM-Gibbs (Suboptimal)

Inputs: T, V, γ(1) = [γ
(1,s)
n ], ϑ = {[ϑ(s)

n (j(s))]}Vs=1

Outputs: γ(1), . . . , γ(T )

P = size(ϑ, 1)
for s = 1 : V
M (s) = size(ϑ(s), 2)− 2, c(s) = [0 : M (s)]

end for
for n = 1 : P

Compute Pn(Λ(1:V )) via (38), Qn(Λ(1:V )) = 1− Pn(Λ(1:V ))
end for
for t = 2 : T
φ(t) = [ ]
for n = 1 : P
in ∼ Categorical

(
[“+”, “−”], [Pn(Λ(1:V )), Qn(Λ(1:V ))]

)
if in = “+”

for s = 1 : V
for j(s) = 0 : M (s)

p
(s)
n (j(s)) = ϑ

(s)
n (j(s))β

(s)
n (j(s)|φ(t,s)

1:n−1, γ
(t−1,s)
n+1:P )

end for

φ
(t,s)
n ∼ Categorical(c(s), p

(s)
n )

end for

φ
(t)
n = [φ

(t,s)
n ]Vs=1

else if

φ
(t)
n = −1 ∗ ones(1, V )

end if

φ(t) = [φ(t);φ
(t)
n ]

end for
γ(t) = φ(t)

end for

in which case,

ϑn(j(1:V )) =

{
η

(1)
n (−1), j(1:V ) ∈ {−1} V∏V
s=1 η

(s)
n (j(s)), j(1:V ) ∈ Λ(1:V )

. (41)

Equation (41) can be verified by substituting (39) for ϑ(s)
n (j(s))

into (34), and the resulting ϑ(s)
n (j(s)|j(s−1)) into (28).

To gain an intuition into how ϑn in (41) approximates ηn,
note firstly that, for j(1:V ) ∈ {−1}V , it is straightforward to
verify ϑn(j(1:V )) = η

(1)
n (−1) = ηn(j(1:V )), by inspecting (22)

and (39). Secondly, for j(1:V ) ∈ Λ(1:V ), note from (22), (41),
and (39) that the approximation of ηn(j(1:V )) boils down to

ψ̄
(ξ,j(1:V ))
Z+

(`n) '
V∏
s=1

ψ̄
(ξ,s,j(s))

Z
(s)
+

(`n).

Conditional on the history ξ and measurement Z+: the left
hand side, given by (23), can be interpreted as the probability
that label `n jointly generates measurements z(1)

j(1) , . . . , z
(V )

j(V ) ,

i.e. Pr(z
(1)

j(1) , . . . , z
(V )

j(V ) ∼ `n); the s-th term of the product,
given by (40), can be interpreted as the probability that `n
generates measurement z(s)

j(s) , i.e. Pr(z
(s)

j(s) ∼ `n) (with z
(s)
0

representing a misdetection by sensor s). In essence, the
suboptimal strategy approximates Pr(z

(1)

j(1) , . . . , z
(V )

j(V ) ∼ `n) by
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Pr(z
(1)

j(1) ∼ `n) × . . . ×Pr(z
(V )

j(V ) ∼ `n), which is reasonable,
because intuitively the events “`n generates measurement
z

(s)

j(s)” and “`n generates measurement z(t)

j(t)
” are almost in-

dependent of each other when s 6= t. Note also that for a
single sensor ϑn = ηn = η

(1)
n .

Remark: In (41), both
∏V
s=1 η

(s)
n (j(s)) and η

(1)
n (−1) (the

latter only depends on P̄
(ξ)
S (`n) and rB,+(`n)), are indepen-

dent of the sensor ordering. Hence (41), and consequently
Algorithm 2 with the suboptimal distribution defined by (41),
are independent of the order of the sensors. Additionally, since
each η(s)

n (j(s)) > 0, it follows that ϑn(j(1:V )) > 0, hence the
convergence result of Proposition 2 holds.

The support of the (minimally-Markov) suboptimal station-
ary distribution contains the support of the optimal stationary
distribution. To verify this, suppose that there exists an s such
that ψ̄(ξ,s,j(s))

Z
(s)
+

(`n) = 0. Then it follows from (40) that

p̄
(ξ)
+ (·, `n) = 0, or ψ(s,j(s))

Z
(s)
+

(·, `n) = 0.

Each of the above conditions implies ψ̄(ξ,j(1:V ))
Z+

(`n) = 0. The
implication of the first condition follows from (15), while
that of the second follows from (8) and (15). Therefore, it
follows from (39) and (22) that

∏V
s=1 η

(s)
n (j(s)) = 0, implies

ηn(j(1:V )) = 0, i.e. the suboptimal stationary distribution is
zero implies the optimal is also zero. Thus, the suboptimal
stationary distribution is positive whenever the optimal is
positive. This means the support of suboptimal stationary
distribution contains that of the optimal.

The suboptimal sampling strategy can be viewed as im-
portance sampling [47], with the suboptimal stationary dis-
tribution as the “proposal” or “importance function” since
its support contains that of the optimal. As such, a larger
number of iterations T would be needed to achieve the same
effective number of samples as per the optimal stationary
distribution [47]. The number of additional samples depends
on how well the suboptimal stationary distribution approxi-
mates the optimal. The better the approximation the smaller
the additional number of samples. Nonetheless, for GLMB
truncation, the total number of distinct samples with significant
weights is more relevant than the effective number of samples.
As such, the optimal stationary distribution is not necessarily
the most desirable in terms of sample diversity [34]. Indeed,
the rationale behind tempering is to modify the stationary
distribution to generate more diverse samples [34].

D. Multi-Sensor GLMB Filtering

A GLMB is completely characterized by parameters
(ω(I,ξ), p(ξ)), (I, ξ) ∈ F (L) × Ξ, which can be enumerated
as
{

(I(h), ξ(h), ω(h), p(h))
}H
h=1

, where

ω(h) , ω(I(h),ξ(h)), p(h) , p(ξ
(h)).

Implementing the GLMB filter amounts to propagating for-
ward the parameter set

{
(I(h), ω(h), p(h))

}H
h=1

.
The multi-sensor GLMB filter implementation is the same

as single-sensor case in [34], with the single-sensor Gibbs
sampler and update replaced by their multi-sensor versions.

Algorithm 3: Multi-Sensor GLMB Filter

Inputs: {(I(h), ω(h), p(h))}Hh=1, Z+, H
max
+

Inputs: {(r(`)
B,+, p

(`)
B,+)}, PS , f+(·|·)

Inputs: {(κ(s)
+ , P

(s)
D,+, g

(s)
+ (·|·))}Vs=1

Outputs: {(I(h+)
+ , ω

(h+)
+ , p

(h+)
+ )}H+

h+=1

Sample counts [T
(h)
+ ]Hh=1 from multinomial distribution with

Hmax
+ trials and weights [ω(h)]Hh=1

for h = 1 : H
Initialize γ(h,1)

Compute ϑ(h) = η(h) using (22) AND

{γ(h,t)}T̃ (h)

t=1 = Unique
(
Gibbs

(
T

(h)
+ , V, γ(h,1), ϑ(h)

))
OR

Compute ϑ(h) = {η(h,s)}Vs=1 using (39), AND

{γ(h,t)}T̃ (h)

t=1 = Unique
(
MM-Gibbs

(
T

(h)
+ , V, γ(h,1), ϑ(h)

))
for t = 1 : T̃

(h)
+

Compute

I
(h,t)
+ =

{
`n ∈ I(h) ∪ B+ : γ

(h,t)
n ≥ 0

}
ω

(h,t)
+ ∝ ω(h)

|I(h)∪B+|∏
n=1

η
(h)
n (γ

(h,t)
n )

p
(h,t)
+ (·, `n) ∝ p̄(h)

+ (·, `n)ψ
(γ(h,t)

n )
Z+

(·, `n)

end for
end for({

(I
(h+)
+ , p

(h+)
+ )

}H+

h+=1
,∼, [Uh,t]

)
= Unique

({
(I

(h,t)
+ , p

(h,t)
+ )

}(H,T̃
(h)
+ )

(h,t)=(1,1)

)
for h+ = 1 : H+

ω
(h+)
+ =

∑
h,t:Uh,t=h+

ω
(h,t)
+

end for

Normalize weights {ω(h+)
+ }H+

h+=1

For completeness the proposed multi-sensor GLMB filter is
summarized in Algorithm 3. Note that to be consistent with
the indexing by h instead of (I, ξ), we abbreviate

η(h)
n (j(1:V )) , ηn(j(1:V )), with (I, ξ) = (I(h), ξ(h))

η(h)(j(1:V )) ,
[
η

(h)
1 (j(1:V )), . . . , η

(h)
P (j(1:V ))

]
P̄

(h)
S (`i) , P̄

(ξ(h))
S (`i)

p̄
(h)
+ (x, `i) , p̄

(ξ(h))
+ (x, `i)

ψ̄
(h,j(1:V ))
Z+

(`i) , ψ̄
(ξ(h),j(1:V ))
Z+

(`i)

η(h,s)
n (j(s)) , η(h,s)

n (j(s)), with (I, ξ) = (I(h), ξ(h))

ψ̄
(h,s,j(s))
Z

(s)
+

(`i) , ψ̄
(ξ(h),s,j(s))
Z

(s)
+

(`i)

Computing p̄
(h)
+ (·, `i), P̄

(h)
S , ψ̄

(h,j(1:V ))
Z+

(`i), ψ̄
(h,s,j(s))

Z
(s)
+

(`i),

p
(h,t)
+ (·, `i), can be done as in subsection IV.B of [15].
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IV. NUMERICAL EXPERIMENTS

In this section, we present simulation results that demon-
strate the performance of the multi-sensor GLMB filters dis-
cussed in Section III. The results are presented in two parts.
In the first part, we use a scenario with a small number of
sensors, and compare the following three algorithms:
• suboptimal multi-sensor GLMB filter (Gibbs sampling

with suboptimal distribution, Subsection III-C1),
• optimal multi-sensor GLMB filter (Gibbs sampling with

optimal distribution, Subsection III-B1), and
• iterated-corrector multi-sensor GLMB filter (standard

prediction and iterated update implementation).
The aim is to show that the suboptimal multi-sensor GLMB
filter can achieve near-optimal results, but at a significantly
smaller computational cost. The scenario used for this com-
parison is limited to four sensors, because the optimal version
does not scale well to a large number of sensors (see Subsec-
tion III-B1). In the second part, we compare the suboptimal
multi-sensor GLMB filter with the iterated-corrector GLMB
filter, on a scenario with a larger number of sensors with
different types. This is designed to demonstrate the scalability
and versatility of the suboptimal version.

Throughout this section a common ground truth is used with
various scenarios of different sensor combinations. The ground
truth involves a maximum of 10 objects simultaneously within
a 2-D surveillance region over a period of 100 seconds. The
objects move according to a discrete white noise acceleration
model, and the number of objects in the surveillance region
varies over time, as new objects can appear and existing
objects can disappear. The state of an object at time k is
represented by its 2-D position and velocity vectors, i.e.
xk = [px,k, py,k, ṗx,k, ṗy,k], and the single-object transition
density is given by

f (xk+1|xk) = N (xk+1;Fkxk, Qk) ,

where

Fk =

[
1 ∆
0 1

]
⊗ I2, Qk = σ2

a

[
∆4

4
∆3

3
∆3

3 ∆2

]
⊗ I2,

I2 is the 2×2 identity matrix, ∆ = 1s is the sampling period,
and σa = 0.15 m/s2 is the standard deviation of the process
noise. The survival probability is PS = 0.98. Object births
are modeled by an LMB with parameters {(rB,k, p(i)

B,k)}6i=1

where rB,k = 0.05, p(i)
B,k(x) = N (x;m

(i)
B,k, QB,k),

m
(1)
B,k = (100, 100, 0, 0) , m

(2)
B,k = (100, 500, 0, 0) ,

m
(3)
B,k = (100, 900, 0, 0) , m

(4)
B,k = (900, 100, 0, 0) ,

m
(5)
B,k = (900, 500, 0, 0) , m

(6)
B,k = (900, 900, 0, 0) ,

and QB,k = diag([25, 25, 5, 5]2). Ten objects appear near
these locations at various times during the first 40 steps. Seven
of these disappear at various times over the last 40 steps.

Each sensor has a fixed position. If sensor i at position
s(i) = (s

(i)
x , s

(i)
y ) with type t(i)generates a detection z

(i)
k for

an object with state xk, then z(i)
k is distributed according to

g(i)(z
(i)
k |xk, s

(i), t(i)) = N (z
(i)
k ;ht(i)(xk, s

(i)), σ2
t(i)).

Based on the following measurement functions (bearing,
range, range rate and position)

hθ(xk, s
(i)) = arctan

(
px,k − s(i)

x

py,k − s(i)
y

)
,

hr(xk, s
(i)) =

√
(px,k − s(i)

x )2 + (py,k − s(i)
y )2,

hrr(xk, s
(i)) =

(px,k − s(i)
x )ṗx,k + (py,k − s(i)

y )ṗy,k
hr(xk, s(i))

,

hp(xk) =

[
px,k
py,k

]
,

we simulate four different types of sensors (i.e. t(i) ∈
{1, 2, 3, 4}) according to the following models:
• Type 1: Bearings only (e.g. passive radar)

h1(xk, s
(i)) = hθ(xk, s

(i))

• Type 2: Bearing and range (e.g. Doppler insensitive active
radar)

h2(xk, s
(i)) =

[
hθ(xk, s

(i))
hr(xk, s

(i))

]
• Type 3: Bearing, range and range-rate (e.g. Doppler

sensitive active radar)

h3(xk, s
(i)) =

 hθ(xk, s
(i))

hr(xk, s
(i))

hrr(xk, s
(i))


• Type 4: Position (e.g. drone-mounted camera)

h4(xk, s
(i)) = hp(xk)

All three algorithms are run with approximately 3000 compo-
nents during the update, which are pruned to approximately
300 best post-update. To examine the tracking performance,
we consider both the OSPA [48] and OSPA(2) [49], [50] dis-
tances between the set of estimated tracks and the set of ground
truth tracks. The OSPA distance is an instantaneous per-object
error, accounting for estimation errors in both localization and
cardinality, but does not capture track labelling errors, as can
occur when objects are close together or cross each other in
the measurement space. The OSPA(2) metric addresses this
by using the OSPA distance with a suitable base-distance
between two tracks (rather than vectors) [50]. Note that the
OSPA(2) distance assesses multi-object tracking error over a
time window (for window of one instant, OSPA(2) reduces to
OSPA) [50]. Hence, an OSPA(2) versus time curve would show
at each time k, the OSPA(2) error over a window ending at k.

A. Scenario 1

For the first experiment, we compare all three tracking
algorithms on a scenario with up to four Type-1 (bearing-
only) sensors. Each sensor has measurement noise standard
deviation σ1 = π/180 rad, and a fixed detection probability of
PD = 0.67. Each sensor also generates a set of false alarms
at each time step, all with a Poisson cardinality distribution
of mean 7. The false alarms are uniformly distributed on the
interval [0, 2π] rad. The sensor positions and ground truth are
shown in Figure 1.
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Fig. 1. Scenario 1: ground truth and sensor layout. The triangles (N) are
the locations of bearing-only sensors, the green circles ( ) indicate the object
starting positions, and the red squares (�) are the final positions.

TABLE I
SCENARIO 1: ALGORITHM EXECUTION TIMES

2-Sensor 3-Sensor 4-Sensor
Optimal 225 439.4 1321.7

Suboptimal 1.5 2.3 3.1
Iterated-Corrector 6.5 6.6 5.9

Each algorithm was tested on the following three configura-
tions; 2 sensors (1 and 2), 3 sensors (1, 2 and 3), and 4 sensors
(1, 2, 3 and 4). We ran 100 Monte Carlo (MC) trials, each with
the same ground truth trajectories, but a different realization of
sensor noise. The MC average OSPA (with cutoff c = 100 m,
order p = 1) and OSPA(2) (with the same c, p, and window
length w = 20) distances are plotted against time in Figure
2. The relative execution times (wrt. the suboptimal filter on
sensor 1) of the algorithms are shown in Table I.

As expected, both the OSPA and OSPA(2) results (Figure
2) demonstrate that the optimal multi-sensor GLMB filter
outperforms the suboptimal version. However, a comparison
of the execution times (Table I) shows that such improved
performance comes at a very large computational cost. The
computational cost of the optimal version scales exponentially
with the number of sensors, whereas the suboptimal version
scales linearly. Despite being allocated an equal number
of components, the iterated-corrector GLMB filter performs
poorly compared to the other two algorithms. Note that the
reduction in execution time of the iterated-corrector at the 4th
sensor is due to component depletion in the previous updates.

B. Scenario 2

To demonstrate the scalability and versatility of the sub-
optimal multi-sensor GLMB filter, we now study its tracking
performance on a far more challenging scenario with unre-
liable sensors (considerably lower detection probability than
Scenario 1), in larger number and more diverse types. All
sensors have a detection probability of PD = 0.5, and generate
Poisson false alarms with a mean of 5 per scan. This is quite an
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Fig. 2. Scenario 1: OSPA, OSPA(2) plots for different number of sensors

adverse signal environment since there is only a 50% chance of
detecting an object. The measurement noise standard deviation
and the false alarm spatial distribution for each sensor type is
given in Table II.

TABLE II
SCENARIO 2: SENSOR MODEL PARAMETERS

Type (i) Meas Noise (σi) Clutter Dist

1 (2π/180) rad [0, 2π] rad

2
[

(2π/180) rad 0
0 50m

]
[0, 2π] rad
× [0, 2000]m

3

 (2π/180) rad 0 0
0 50m 0
0 0 2m/s

 [0, 2π] rad
× [0, 2000]m
× [−10, 10]m/s

4
[

150m 0
0 150m

]
[0, 1000]m
× [0, 1000]m

We test two different cases: the first with a total of 7 sensors
(two each of Type-1, Type-2, Type-3, and one Type-4); and
the second with a total of 13 sensors (four each of Type-1,
Type-2, Type-3, and one Type-4). Ground truths and sensor
configurations for the 7-sensor and 13-sensor cases are shown
in Figure 3. In this experiment, we can only compare with the
iterated-corrector multi-sensor GLMB filter, since the optimal
version becomes computationally infeasible for more than four
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Fig. 3. Scenario 2: ground truth and sensor layout, 7-sensor configuration
(black sensors), 13-sensor configuration (all sensors).

sensors. Note that even the latest scalable solution for multi-
sensor multi-object filtering, see for example [11], can only
cope with 3 sensors on a less challenging scenario (than this
experiment) with a PD of 0.6 (rather than 0.5), and up to 5
objects (rather than 10).
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Fig. 4. Scenario 2: OSPA, OSPA(2) plots for 7-sensor and 13-sensor cases.
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Fig. 5. 7-sensor case: true and mean cardinality (with 1-sigma bounds).
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Fig. 6. 13-sensor case: true and mean cardinality (with 1-sigma bounds).

Again, we carried out 100 MC trials for each case with the
same ground truth and different realizations of sensor noise.
The MC average OSPA and OSPA(2) distances (with the same
parameters as Scenario 1) are plotted against time in Figure
4. The mean (and one-sigma bounds) of the cardinality for
the 7-sensor and 13-sensor cases are plotted in Figures 5 and
6, respectively. The relative execution times (wrt. the iterated-
corrector strategy on the 7-sensor case) of the algorithms are
shown in Table III.

TABLE III
SCENARIO 2: ALGORITHM EXECUTION TIMES

7-Sensor 13-Sensor
Iterated-Corrector 1.00 1.27

Suboptimal 1.11 2.16

The OSPA and OSPA(2) plots (Figure 4) indicate that
the suboptimal multi-sensor GLMB filter significantly out-
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performs the iterated-corrector implementation in both the 7-
sensor and 13-sensor cases. This concurs with the cardinality
statistics (Figures 5 and 6), which show the iterated-corrector
producing significantly less accurate estimates and with higher
variability.

Note that the tracking performance of the iterated-corrector
implementation depends on the order in which the sensors are
processed. In our experiments the iterated-corrector processes
the bottom left sensor first, and progresses anti-clockwise to
the last sensor. The first sensor is a Type-3 sensor (bear-
ing, range and range rate), which is the most informative
amongst the sensors. The performance could be far worse
by starting with a less informative sensor. Finding the best
the performance over all sensor permutations is infeasible for
large number of sensors, not to mention such optimal sensor
permutation is data dependent.

The suboptimal (and optimal) multi-sensor GLMB filter
uses the joint prediction and update, which simultaneously
integrates information from the survival model as well as
measurements from all sensors to generate significant com-
ponents. In contrast, the iterated-corrector uses information
from the survival model first, followed by information from
the measurements of each sensor, one at a time. Due to such
lack of information prior to each update, components that
would be significant after subsequent updates are likely to be
discarded, leading to component depletion. This explains the
iterated-corrector’s poorer tracking performance (compared to
the suboptimal) while having a slower increase in execution
times as the number of sensors increases.

V. CONCLUSIONS

This paper proposed an efficient implementation of the
multi-sensor GLMB filter by integrating the prediction and
update into one step along with an efficient algorithm for
truncating the GLMB filtering density based on Gibbs sam-
pling. The resulting algorithm is an on-line multi-sensor multi-
object tracker with linear complexity in the total number of
measurements across the sensors, and quadratic in the number
of hypothesized tracks. Numerical studies verify the scalability
of the proposed solution with respect to the total number of
measurements.

The proposed multi-sensor GLMB implementation is also
applicable to approximations such as the labeled multi-
Bernoulli (LMB) and marginalized GLMB filters, since these
filters require full GLMB updates to be performed [51],
[17]. Conceptually, the proposed the multi-sensor solution
can also be extended to the multi-scan case [33]. However,
the multi-sensor multi-scan GLMB filtering problem is far
more computationally intensive, and the key challenge lies in
achieving real-time speed for practical applications.

VI. APPENDIX

A. Proof of Proposition 1

Let n̄ = {1 : P} − {n} and Γ (n̄) be the set of all
γn̄ = (γ1:n−1, γn+1:P ) ∈ ({−1}V ] Λ(1:V ))P−1 that are
positive 1-1 (i.e. γn̄ such that for each s ∈ {1 : V } there
are no distinct i, j ∈ n̄ with γ

(s)
i = γ

(s)
j > 0). We are

interested in the functional dependence of πn (γn|γn̄) on γn,
while its dependence on all other variables is aggregated into
the normalizing constant:

πn (γn|γn̄) ,
π (γ)

π (γn̄)
∝ π (γ)

∝ 1Γ (γ)

P∏
j=1

ϑj (γj)

= ϑn (γn) 1Γ (γ)
∏
j∈n̄

ϑj (γj) .

Factorizing 1Γ (γ) using Lemma A, gives

πn (γn|γn̄)

∝ ϑn (γn)

V∏
s=1

∏
i∈n̄

(
1− 1{1:M(s)}(γ

(s)
n )δ

γ
(s)
n

[γ
(s)
i ]
)

× 1Γ(n̄) (γn̄)
∏
j∈n̄

ϑj (γj)

∝ ϑn (γn)

V∏
s=1

∏
i∈n̄

(
1− 1{1:M(s)}(γ

(s)
n )δ

γ
(s)
n

[γ
(s)
i ]
)
. (42)

If j(1:V ) ∈ Λ(1:V ), then it follows from (42) that
πn(j(1:V )|γn̄) ∝ ϑn(j(1:V )), unless there exist i ∈ n̄ and s

with γ
(s)
i = j(s) > 0, in which case πn(j(1:V )|γn̄) = 0 (be-

cause 1{1:M(s)}(j
(s))δj(s) [γ

(s)
i ]=1). Thus, for j(1:V ) ∈ Λ(1:V )

πn(j(1:V )|γn̄)

∝ ϑn(j(1:V ))

V∏
s=1

(
1−1{1:M(s)}

⋂
{γ(s)

1:n−1,γ
(s)
n+1:P }

(j(s))
)
.

On the other hand, if j(1:V ) ∈ {−1}V , then 1{1:M(s)}(j
(s)) =

0 for all s, and (42) implies πn(j(1:V )|γn̄) ∝ ϑn(j(1:V )).
Hence the above equation holds on {−1}V ] Λ(1:V ).

Lemma A.

1Γ(γ)=1Γ(n̄)(γn̄)

V∏
s=1

∏
i∈n̄

(
1−1{1:M(s)}(γ

(s)
n )δ

γ
(s)
n

[γ
(s)
i ]
)
.

(43)
Proof: Note that the condition γ(s)

i = γ
(s)
j > 0 is equivalent

to δ
γ

(s)
i

[γ
(s)
j ]1{1:M(s)}(γ

(s)
i ) = 1. Hence, γ(s) is positive 1-1

iff for any distinct i, j, δ
γ

(s)
i

[γ
(s)
j ]1{1:M(s)}(γ

(s)
i ) = 0. Also,

γ(s) is not positive 1-1 iff there exists distinct i, j such that
δ
γ

(s)
i

[γ
(s)
j ]1{1:M(s)}(γ

(s)
i ) = 1. Similarly, γ(s)

n̄ is positive 1-1

iff for any distinct i, j ∈ n̄, δ
γ

(s)
i

[γ
(s)
j ]1{1:M(s)}(γ

(s)
i ) = 0.

We will show that; (a) if γ is positive 1-1 then the right hand
side (RHS) of (43) equates to 1, and (b) if γ is not positive
1-1, then the RHS of (43) equates to 0.

To establish (a), assume that γ is positive 1-1, then γn̄ is
also positive 1-1, i.e., 1Γ(n̄) (γn̄) = 1, and for any i 6= n,
δ
γ

(s)
n

[γ
(s)
i ]1{1:M(s)}(γ

(s)
n ) = 0 for all s. Hence the RHS of

(43) equates to 1.
To establish (b), assume that γ is not positive 1-1. If γn̄

is also not positive 1-1, i.e., 1Γ(n̄) (γn̄) = 0, then the RHS
of (43) trivially equates to 0. It remains to show that even if
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γn̄ is positive 1-1, the RHS of (43) still equates to 0. Since
γ is not positive 1-1, there exist an s and distinct i, j such
that δ

γ
(s)
i

[γ
(s)
j ]1{1:M(s)}(γ

(s)
i ) = 1. Further, either i or j has to

equal n, because the positive 1-1 property of γn̄ implies that if
such (distinct) i, j, are in n̄, then δ

γ
(s)
i

[γ
(s)
j ]1{1:M(s)}(γ

(s)
i ) =

0 and we have a contradiction. Hence, there exist an s and
i 6= n such that δ

γ
(s)
n

[γ
(s)
i ]1{1:M(s)}(γ

(s)
n ) = 1, and thus the

RHS of (43) equates to 0.

B. Proof of Proposition 3

Let us make the following abbreviations,

ϑ̃(1)
n (j(1)) , β(1)

n (j(1)|γ(1)
n̄ )ϑ(1)

n (j(1)),

K(1)
n ,

M(1)∑
j(1)=−1

ϑ̃(1)
n (j(1))K(2)

n (j(1))

ϑ̃(s)
n (j(s)|j(s−1)) , β(s)

n (j(s)|γ(s)
n̄ )ϑ(s)

n (j(s)|j(s−1)),

K(s)
n (j(s−1)) ,

M(s)∑
j(s)=−1

ϑ̃(s)
n (j(s)|j(s−1))K(s+1)

n (j(s)).

for s ∈ {2 : V }, with K(V+1)
n (j(V )) = 1.

Substituting K(2)
n (j(1)) into K(1)

n gives

K(1)
n =

∑
j(1:2)

ϑ̃(1)
n (j(1))ϑ̃(2)

n (j(2)|j(1))K(3)
n (j(2)).

Further, repeating this substitution with K
(3)
n (j(2)),..., and

K
(V−1)
n (j(V−2)) gives

K(1)
n =

∑
j(1:V )

ϑ̃(1)
n (j(1))ϑ̃(2)

n (j(2)|j(1)) . . . ϑ̃(V )
n (j(V )|j(V−1))

Using (25), the n-th conditional is

πn(j(1:V )|γn̄) =
ϑn(j(1:V ))

∏V
s=1 β

(s)
n (j(s)|γ(s)

n̄ )∑
j(1:V )

ϑn(j(1:V ))
∏V
s=1 β

(s)
n (j(s)|γ(s)

n̄ )

=

∏V
s=2 ϑ̃

(s)
n (j(s)|j(s−1))ϑ̃

(1)
n (j(1))∑

j(1:V )

∏V
s=2 ϑ̃

(s)
n (j(s)|j(s−1))ϑ̃

(1)
n (j(1))

=
1

K
(1)
n

V∏
s=2

ϑ̃(s)
n (j(s)|j(s−1))ϑ̃(1)

n (j(1))

=
ϑ̃

(V )
n (j(V )|j(V−1))

K
(V )
n (j(V−1))

×

K
(V )
n (j(V−1))ϑ̃

(V−1)
n (j(V−1)|j(V−2))

K
(V−1)
n (j(V−2))

× . . .

× K
(3)
n (j(2))ϑ̃

(2)
n (j(2)|j(1))

K
(2)
n (j(1))

× K
(2)
n (j(1))ϑ̃

(1)
n (j(1))

K
(1)
n

=

V∏
s=2

π(s)
n (j(s)|j(s−1), γn̄)π(1)

n (j(1)|γn̄),

where π
(1)
n (j(1)|γn̄) = K

(2)
n (j(1))ϑ̃

(1)
n (j(1))/K

(1)
n , which is

indeed (31), and

π(s)
n (j(s)|j(s−1), γn̄) =

K
(s+1)
n (j(s))ϑ̃

(s)
n (j(s)|j(s−1))

K
(s)
n (j(s−1))

.

Note that the normalizing constants K(1)
n , K(s)

n (j(s−1)), s ∈
{2 : V }, are all positive, otherwise (29) is not a probability
distribution on ({−1}V ] Λ(1:V ))P .

Additionally, for (29) to be a probability distribution on
({−1}V ]Λ(1:V ))P , each conditional πn(j(1:V )|γn̄), must be
a probability distribution on {−1}V ] Λ(1:V ), which in turn
implies that for each s ∈ {2 : V },

π(s)
n (−1| − 1, γn̄) = 1

π(s)
n (j(s)| − 1, γn̄) = 0, j(s) > −1

π(s)
n (−1|j(s−1), γn̄) = 0, j(s−1) > −1

Otherwise, we would have realizations from πn(j(1:V )|γn̄) that
are outside of {−1}V ] Λ(1:V ), the very space on which it is
defined. Further, the last condition means that for j(s−1) >
−1, K(s+1)

n (−1) ϑ̃
(s)
n (−1|j(s−1)) = 0, and hence

K(s)
n (j(s−1)) =

M(s)∑
j=−1

K(s+1)
n (j)ϑ̃(s)

n (j|j(s−1))

=

M(s)∑
j=0

K(s+1)
n (j)ϑ̃(s)

n (j|j(s−1)).

Therefore π(s)
n (j(s)|j(s−1), γn̄) is given by (32).

C. Proof of Corollary to Proposition 3

Using (34), and noting that β(s)
n (−1|γ(s)

n̄ ) = 1, the normal-
izing constants (33) can be written as

K(V )
n (j(V−1))

=

ϑ
(V )
n (−1) , j(V−1) = −1∑
j

β
(V )
n (j|γ(V )

n̄ )ϑ
(V )
n (j), j(V−1) > −1

=

{
ϑ

(V )
n (−1) , j(V−1) = −1

Υ
(V )
n , j(V−1) > −1

K(V−1)
n (j(V−2))

=

ϑ
(V )
n (−1)ϑ

(V−1)
n (−1) , j(V−2) =−1

Υ
(V )
n
∑
j

β
(V−1)
n (j|γ(V−1)

n̄ )ϑ
(V−1)
n (j), j(V−2)>−1

=

{
ϑ

(V )
n (−1)ϑ

(V−1)
n (−1) , j(V−2) = −1

Υ
(V )
n Υ

(V−1)
n , j(V−2) > −1

...

K(s)
n (j(s−1))

=

{
ϑ

(V )
n (−1)ϑ

(V−1)
n (−1) . . . ϑ

(s)
n (−1) , j(s−1) = −1

Υ
(V )
n Υ

(V−1)
n . . .Υ

(s)
n , j(s−1) > −1

.

Hence, (31) becomes
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π(1)
n (j(1)|γ(1)

n̄ )

=



ϑ(1)
n (j(1))

V∏
s=2

ϑ(s)
n (−1)

ϑ
(1)
n (−1)

V∏
s=2

ϑ
(s)
n (−1)+

V∏
s=2

Υ
(s)
n

M(1)∑
j=0

β
(1)
n (j|γ(1)

n̄ )ϑ
(1)
n (j)

, j(1) =−1

β(1)
n (j(1)|γ(1)

n̄ )ϑ(1)
n (j(1))

V∏
s=2

Υ(s)
n

ϑ
(1)
n (−1)

V∏
s=2

ϑ
(s)
n (−1)+

V∏
s=2

Υ
(s)
n

M(1)∑
j=0

β
(1)
n (j|γ(1)

n̄ )ϑ
(1)
n (j)

, j(1)>−1

=



V∏
s=1

ϑ(s)
n (−1)

V∏
s=1

ϑ
(s)
n (−1)+

V∏
s=1

Υ
(s)
n

j(1) = −1

V∏
s=2

Υ(s)
n β(1)

n (j(1)|γ(1)
n̄ )ϑ(1)

n (j(1))

V∏
s=1

ϑ
(s)
n (−1)+

V∏
s=1

Υ
(s)
n

j(1) > −1

=

1− Pn(Λ(1:V )), j(1) =−1
Pn(Λ(1:V ))β(1)

n (j(1)|γ(1)
n̄ )ϑ(1)

n (j(1))

Υ
(1)
n

, j(1)>−1

and (32) becomes

π(s)
n (j(s)|j(s−1), γ

(s)
n̄ )

=


1, j(s), j(s−1) =−1

V∏
t=s+1

Υ(t)
n β(s)

n (j(s)|γ(s)
n̄ )ϑ(s)

n (j(s))

V∏
t=s+1

Υ
(t)
n

M(s)∑
j(s)=0

β
(s)
n (j(s)|γ(s)

n̄ )ϑ
(s)
n (j(s))

, j(s), j(s−1)>−1

=

1, j(s), j(s−1) = −1
β(s)
n (j(s)|γ(s)

n̄ )ϑ(s)
n (j(s))

Υ
(s)
n

, j(s), j(s−1) > −1

for s ∈ {2 : V }.
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