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Abstract— We propose a new multi-target tracking (MTT)
algorithm capable of tracking an unknown number of targets
that move close and/or cross each other in a dense environment.
The optimal Bayes MTT problem is formulated in the Random
Finite Set framework and Particle Markov Chain Monte Carlo
(PMCMC) is applied to compute the multi-target posterior distri-
bution. The PMCMC technique is a combination of Markov chain
Monte Carlo (MCMC) and sequential Monte Carlo methods
to design an efficient high dimensional proposal distributions
for MCMC algorithms. This technique allows our multi-target
tracker to handle high track densities in a computationally
feasible manner. Our simulations show that under scenarios with
a large number of closely spaced tracks the estimated number
of tracks and their trajectories are reliable.
Keywords: Multi-target Tracking, Particle Markov chain
Monte Carlo, Markov Chain Monte Carlo, Random Sets,
Sequential Monte Carlo.

I. INTRODUCTION

The Multi-target tracking (MTT) problem is essentially that
of estimating the presence and associated time trajectories
of moving objects based on measurements from a variety
of sensors. Over the past 40 years MTT has emerged as a
fundamentally important technology with diverse applications
ranging from radar tracking for aircraft, passive and active
acoustic tracking for seacraft, video tracking of people for
security applications, etc. [1], [2]

This paper investigates the problem where the targets being
tracked may randomly appear and disappear from the field
of view, they may be temporarily obscured by other objects,
may merge and split, and may cross or travel very close to
each other for extended periods of time. Sensor measurements
also present a number of challenging characteristics, such as
noise which introduces location errors and may cause missed
detection of objects, false measurements which do not belong
to a valid object of interest, ghosting, misidentification etc.

The majority of existing MTT algorithms such as Multi-
ple Hypothesis Tracking (MHT) [3], Joint Probabilistic Data
Association (JPDA) [4], Joint Integrated Probabilistic Data
Association - JIPDA [5], and their variants etc have been
found to perform effectively provided the density of targets
and the number of false measurements are modest. However,

these techniques are no longer adequate when the density of
targets is high and the number of false measurements is large.
In this paper we propose a Bayesian multi-target batch pro-
cessing tracking algorithm based on Random Finite Set (RFS)
modeling and Particle Markov Chain Monte Carlo (PMCMC)
numerical approximation to overcome this problem.

Markov Chain Monte Carlo (MCMC) is a powerful com-
putational tool for analysis of complex statistical problems. In
the context of MTT, the MCMC was first used by Pasula et
al [6], [7] to solve a multi-camera traffic surveillance problem
involving hundreds of vehicles. Cong et al used MCMC to
approximate the association probabilities in the JPDA filter
[8]. The latest development in MCMC is PMCMC [9] which
combines the strength of MCMC and Sequential Monte Carlo
(SMC) to provide more versatile proposal distribution design.

The RFS approach to multi-target tracking is an emerging
and promising alternative to the traditional association-based
methods [10], [11]. The rationale for the RFS approach traces
back to the fundamental notion of multi-target estimation
error, see [12]. Moreover, in recent years this approach has
attracted substantial interest due to theoretical and algorithmic
advances such as the probability hypothesis density/cardinality
probability hypothesis density (PHD/CPHD) filters [11], [13]–
[16]. While these approximations are an improvement over
traditional approaches in high density scenarios, performance
can be improved with batch processing techniques, albeit at
the expense of computation.

The main contribution of this paper is the development of
a Bayesian multi-target batch processing tracking algorithm
based on RFS modeling and PMCMC numerical approxima-
tion with the Gaussian Mixture Probability Hypothesis Density
(GM-PHD) initialization, capable of tracking multiple targets
in very high density situations.

The structure of this paper is as follows. Section II-A de-
scribes a model of a multi-target system. An RFS formulation
of the multi-target tracking problem is presented in Section
II-B. The Particle Marginal Metropolis-Hastings (PMMH)
algorithm for MTT, is presented in Section III. Section IV
gives the main result of this paper including simulations and
discussion.



II. PROBLEM FORMULATION

This section presents a Bayesian formulation of the multi-
target tracking problem. Subsection II-A describes the multi-
target system model. Subsection II-B is devoted to the problem
formulation in which the trajectories of targets (or tracks) are
defined in Definition 1, a particular collection of tracks (track
hypothesis) is defined in Definition 2 and finally a Bayesian
recursion for construction of the posterior distribution of the
tracks is presented.

We use the notation u1:t = (u1, . . . , ut). Moreover, |A|
denotes the cardinality of the set A.

A. Random Finite Set Model

Let T be the number of measurement scans. Then T =
{1, ..., T} is the set of time indices. In MTT problems, at
time t, a multi-target state and a multi-target measurement
are respectively represented as finite sets Xt and Zt. If nt
targets are present at time t, the multi-target state Xt =
{x1, x2, . . . , xnt} ⊂ X where X ⊆ Rnx is the single-target
state space. Similarly, if there are mt observations at time t,
the multi-target observation Zt = {z1, . . . , zmt} ⊂ Z where
Z ⊆ Rnz is the measurement space.

In order to distinguish multiple target trajectories we aug-
ment each single-target state with the target label. Thus our
augmented single-target state space is

X̃ = X ×N. (1)

where N = {1, 2, . . .}.
Hereafter, if there is no ambiguity the state space and

augmented state space are used interchangeably when referring
to X̃ . At time t, we denote the augmented multi-target state by
X̃t. Note that X̃t ∈ F(X̃ ) where F(A) denotes the collection
of all finite subsets of the set A.

Each state x̃t−1 ∈ X̃t−1 is assumed to follow a Markov
process in the following sense. The target either continues to
exist at time t with probability pSt(x̃t−1) and moves to the
new state x̃t with probability density f̄t|t−1(x̃t|x̃t−1) or dies
with probability 1−pSt(x̃t−1) and takes on the value ∅. Thus,
given an augmented single state x̃t−1 ∈ X̃t−1 at time t − 1,
its behavior at time t is modeled by the Bernoulli RFS

St|t−1(x̃t−1)

that is either {x̃t} when the target survives or ∅ when the
target dies. A new target at time t may result from either the
spontaneous birth (i.e. independent of the surviving targets) or
spawning from the target at time t−1. Note that labels for new
targets cannot be chosen from existing targets or dead targets.
The augmented multi-target state at time t is the union of
the existing targets, the spawned targets and the spontaneous
births

X̃t = St|t−1(X̃t−1) ∪ Bt|t−1(X̃t−1) ∪ Γt.

The three RFSs on the right hand side are assumed to be mutu-
ally independent conditional on X̃t−1 where St|t−1(X̃t−1) =⋃
x̃∈X̃t−1

St|t−1(x̃) and Bt|t−1(X̃t−1) =
⋃
x̃∈X̃t−1

Bt|t−1(x̃).

The actual forms of Bt|t−1(x̃) and Γt are problem dependent.
The augmented multi-target state transition can be alternatively
stated in the form of an augmented multi-target transition
density ft|t−1(·|·) given by

ft|t−1(X̃t|X̃t−1) = (πS,t|t−1 ∗ πB,t|t−1 ∗ πΓ,t)(X̃t|X̃t−1)

where
• πS,t|t−1(·|X̃t−1), πB,t|t−1(·|X̃t−1) and πΓ,t are the prob-

ability densities of the RFS of survival, spawning and
spontaneous birth Γt; and

• β ∗ γ denotes the convolution between β and γ (see [13,
chapter 13] for definition of this operator).

ft|t−1(X̃t|X̃t−1) is initialized with the prior density µ0 i.e.
f1|0(X̃1|X̃0) = µ0(X̃1).

At time t, each augmented single-target state x̃t ∈ X̃t,
is either detected with probability pDt(x̃t) and generates
an observation zt with likelihood ḡt(zt|x̃t), or missed with
probability 1 − pDt(x̃t). Thus, at time t, each augmented
single-target state x̃t ∈ X̃t generates an RFS Dt(x̃t) that can
take either the value {zt} when the target is observed by a
sensor or ∅ when the target is not detected. Therefore target-
generated measurements is

Dt(X̃t) =
⋃
x̃∈X̃t

Dt(x̃).

We assume that
(A.1) No two different targets share the same measurement

at any time.
If more than two targets generates the same measurement,
then this measurement will be arbitrarily associated with one
of these targets and the other targets will be considered as not
detected.

Apart from target-originated measurements, the sensor also
receives a set of false/spurious measurements or clutter which
is modeled by an RFS Λt. Thus, Zt, the measurement at time
t, is the union of target-generated measurements and clutter,
hence

Zt = Dt(X̃t) ∪ Λt.

Given the probability density πD,t(·|·) of target-generated
measurement Dt(·) and the probability density πΛ,t(·) of
clutter Λt, the augmented multi-target likelihood is given by

gt(Zt|X̃t) = (πD,t ∗ πΛ,t)(Zt|X̃t). (2)

For notational simplicity, f(X̃t|X̃t−1) and g(Zt|X̃t) are used
in place of ft|t−1(X̃t|X̃t−1), and gt(Zt|X̃t) respectively if
there is no ambiguity.

B. Track in RFS framework

Our objective is to estimate the tracks (paths of targets)
over time. In terms of the states, a track is the collection of
at least m∗ single states on consecutive times with the same
label where m∗ is called a track gate. Mathematically, a track
is defined as follows



Definition 1 (Track) Given a track gate m∗, a track τ is an
array of the form

τ = (k, t, x0, . . . , xm), m ≥ m∗ − 1 (3)

where k ∈ N is the track label or identity, t ∈ T is the initial
time of the track, xi ∈ X is state of the track at time t+ i for
i = 0, . . . ,m.

For the track τ in (3), we denote the instances of track
existence, the initial time of the track, the last existing time of
the track and the track label respectively by

T(τ) = {t, t+ 1, . . . , t+m},
T0(τ) = t,

Tf (τ) = t+m,

L(τ) = k.

For t′ ∈ T(τ), we denote the state at time t′ and the augmented
state at time t′ respectively by

xt′(τ) = xt′−t,

x̃t′(τ) = (xt′−t, k).

Similarly, for intuitive notation, given an augmented single-
target state x̃ = (x, k) we also denote the label of x̃ by

L(x̃) = k.

A collection of tracks in which no two tracks share the same
state at any time is called a track Hypothesis.

Definition 2 (Track hypothesis) A track hypothesis ω is a set
of tracks such that no two tracks share the same label and no
two tracks share the same state at any time i.e. for all τ, τ ′ ∈ ω

1) L(τ) 6= L(τ ′) and
2) xt(τ) 6= xt(τ

′) for any t ∈ T(τ) ∩ T(τ ′).

For a track hypothesis ω, we denote augmented multi-target
state at time t ∈ T by

X̃t(ω) = {x̃t(τ) : τ ∈ ω}.

Our objective is to find the track hypothesis ω which maximize
the posterior distribution p(ω|Z1:T ). Note that a track hypoth-
esis ω can be equivalently specified by the array of augmented
multi-target states X̃1:T (ω) = (X̃1(ω), . . . , X̃T (ω)). Hence,

p(ω|Z1:T ) = p(X̃1:T |Z1:T ) =

∏T
t=1 f(X̃t|X̃t−1)g(Zt|X̃t)

p(Z1:T )
(4)

where X̃1:T = X̃1:T (ω) = (X̃1, . . . , X̃T ) and X̃t = X̃t(ω)
for t = 1, . . . , T .

In the next section we propose a numerical approximation
to the multi-target posterior distribution using the Particle
Marginal - Metropolis Hastings (PMMH) sampler which is
one of the PMCMC methods.

III. ALGORITHM

In this section we detail the main algorithm of the paper,
namely PMMH Algorithm for MTT that combines PMMH
Sampler [9] with proposal moves designed to deal with the
varying dimensions of the multi-target state space.

Direct application of MCMC to the above form of the
posterior distribution is intractable because computation of
the likelihood function in (4) is intractable when the set
of measurements and/or the number of target states at time
t is large because all possible combination between target
states and measurement must be considered. To overcome this
problem, we employ a form of the multi-target likelihood given
in [13].

g(Zt|X̃t) ∝
∑
θt

g(z1, . . . , z|Zt||X̃t, θt)w(θt)

where θt is an auxiliary variable, defined as a mapping from
L(X̃t) to {0, 1, . . . , |Zt|} with the property that θt(k) =
θt(k

′) > 0 implies that k = k′;

g(z1:|Zt||X̃t, θt) =∏
i/∈θt(L(X̃t))

κt(zi)

〈κt, 1〉
∏

x̃′∈X̃t:θt(L(x̃′))=0

(1− pDt(x̃′))×∏
x̃∈X̃t:θt(L(x̃))>0

pDt(x̃)ḡt(zθt(L(x̃))|x̃) (5)

where κt denotes the clutter intensity at time t; 〈u, v〉 =∫
u(x)v(x)dx; and g(z1:|Zt||X̃t, θt) in (5) is 1 if Zt = ∅ (i.e.

all targets are undetected if X̃t 6= ∅) or
∏
z∈Zt

κt(z)
〈κt,1〉 if X̃t = ∅

(i.e. all measurements are clutter if Zt 6= ∅); and

w(θt) = e−〈κt,1〉〈κt, 1〉|{1,...,|Zt|}−{j:j∈θt(L(X̃t))}|.

where w(θt) = e−〈κt,1〉〈κt, 1〉|Zt| if X̃t = ∅. The auxiliary
variable θt can be interpreted as the assignment of the target
labels to the measurement indices. Undetected targets are
assigned to 0. We extend the auxiliary variable θt to an
augmented auxiliary variable θ̃t by ∅ if X̃t = ∅ otherwise

θ̃t(k) = (θt(k), k)

where k ∈ L(X̃t). We also denote θ̃1:T = (θ̃1, . . . , θ̃T ), Z̃t =
z1:|Zt| and Z̃1:t = (Z̃1, . . . , Z̃t).

For notational simplicity Z, Z̃, X̃, θ̃ are used in place of
Z1:T , Z̃1:T , X̃1:T , θ̃1:T respectively if there is no ambiguity.
The multi-target posterior distribution now takes the form

p(X̃|Z) ∝
∑
θ̃

p(X̃|Z̃, θ̃)p(θ̃|Z̃) (6)

where
p(θ̃|Z̃) ∝ p(Z̃|θ̃)w(θ̃)

with w(θ̃) =
∏T
t=1 w(θ̃t), w(θ̃t) = w(θt); and

p(X̃|Z̃, θ̃) =
p(X̃, Z̃|θ̃)
p(Z̃|θ̃)

=

T∏
t=1

f(X̃t|X̃t−1)g(Z̃t|X̃t, θ̃t)

p(Z̃|θ̃)
.



with g(Z̃t|X̃t, θ̃t) = g(Z̃t|X̃t, θt). The variable θ̃ is in essence
a nuisance variable to be marginalized out. Our aim is to find
θ̃ and X̃ that maximizes p(X̃, θ̃|Z̃). The right hand side of
(6) suggests that for each MC iteration we sample θ̃ first and
then sample X̃ conditioned on θ̃ and Z̃. This approach is
called Marginal Metropolis-Hastings (MMH) sampling. The
Particle Marginal - Metropolis Hastings (PMMH) sampler [9]
uses SMC approximation as a proposal distribution for the
Metropolis-Hastings (MH) sampler.

A. PMMH for Multi-target Tracking
Given θ̃ and Z̃, the SMC algorithm propagates N particles

{X̃n
1:t,Wt(X̃

n
1:t)}Nn=1 t = 1, . . . , T as follows.

At time t = 1: the importance sampling (IS) is used to
approximate p(X̃1|Z̃1, θ̃1) by using an importance density
q(X̃1|Z̃t, θ̃1) to sample N particles {X̃n

1 ,W
n
1 }Nn=1. Then

resampling step is used to sample N times from the IS approx-
imation p̂(X̃1|Z̃t, θ̃1) of p(X̃1|Z̃t, θ̃1). N samples {X̃n

1 }Nn=1

which are obtained from resampling step are approximately
distributed according to p(X̃1|Z̃t, θ̃1).

At time t = 2, . . . , T : the posterior distribution

p(X̃1:t|Z̃1:t, θ̃1:t) ∝ p(X̃1:t−1|Z̃1:t−1, θ̃1:t−1)×
f(X̃t|X̃t−1)g(Z̃t|X̃t, θ̃t)

suggests that the samples at previous time t − 1 which ap-
proximate the posterior distribution p(X̃1:t−1|Z̃1:t−1, θ̃1:t−1)
can be used at time step t by extending each of such
these particles through the IS distribution q(X̃t|Z̃t, X̃t−1, θ̃t)
to produce samples approximately distributed according to
p(X̃1:t−1|Z̃1:t−1, θ̃1:t−1)q(X̃t|X̃t−1, θ̃t). Then the resampling
step produces samples {X̃n

1:t}Nn=1 approximately distributed
according to p(X̃1:t|Z̃1:t, θ̃1:t).

The pseudocode of the SMC algorithm is given in Algorithm
1. Wt = (W 1

t , . . . ,W
N
t ) defines a probability distribution on

{1, . . . , N} denoted by F(·|Wt).
In Algorithm 1, for n = 1, . . . , N the variable Ant−1 is

the index of the ’parent’ at time t − 1 of particle X̃n
1:t

for t = 2, . . . , T . The variables Bn1:T is introduced as the
ancestral lineage of the particle X̃n

1:t such that BnT = n

and Bnt = A
Bnt+1

t for t = T − 1, . . . , 1. Therefore, particle
X̃n

1:T = (X̃
Bn1
1 , . . . , X̃

BnT
T ) for n = 1, . . . , N .

The SMC algorithm provides us an approximation of the
posterior distribution p(X̃|Z̃, θ̃) as follows

p̂(X̃|Z̃, θ̃) =

N∑
n=1

Wn
T δ(X̃ − X̃n

1:T ) (9)

where δ(·) is a dirac delta function. In addition, the estimate
of the marginal likelihood p(Z̃|θ̃) is

p̂(Z̃|θ̃) =

T∏
t=1

p̂(Z̃t|Z̃1:t−1, θ̃1:t) (10)

where p̂(Z̃1|Z̃0, θ̃1) = p̂(Z̃1|θ̃1) and

p̂(Z̃t|Z̃1:t−1, θ̃1:t) =
1

N

N∑
n=1

wt(X̃
n
1:t) (11)

Algorithm 1 : SMC Algorithm

Input: Given Z̃, θ̃, pSt , pDt , κt, the birth intensity γt, for
t = 1, . . . , T and sample number N .
Output: X̃n

1:T ,W
n
T , and wnt (X̃n

1:t) for n = 1, . . . , N .
At time t = 1:

- sample X̃n
1 ∼ q(·|Z̃1, θ̃1). Then compute

w1(X̃n
1 ) =

p(X̃n
1 , Z̃1|θ̃1)

q(X̃n
1 |Z̃1, θ̃1)

=
µ0(X̃n

1 )g(Z̃1|X̃n
1 , θ̃1)

q(X̃n
1 |Z̃1, θ̃1)

(7)

and normalize Wn
1 = w1(X̃n

1 )/
∑N
m=1 w1(X̃m

1 ).
At t = 2, . . . , T :

- sample Ant−1 ∼ F(·|Wt−1), then X̃n
t ∼ q(·|X̃Ant−1

t−1 , Z̃t, θ̃t)

and set X̃n
1:t = (X̃

Ant−1

1:t−1, X̃
n
t ). Then compute

wt(X̃
n
1:t) =

p(X̃n
1:t, Z̃1:t|θ̃1:t)

p(X̃
Ant−1

1:t−1, Z̃1:t−1|θ̃1:t−1)q(X̃n
t |X̃

Ant−1

t−1 , Z̃t, θ̃t)

=
f(X̃n

t |X̃
Ant−1

t−1 )g(Z̃t|θ̃t, X̃n
t )

q(X̃n
t |X̃

Ant−1

t−1 , Z̃t, θ̃t)
(8)

and normalize Wn
t = wt(X̃

n
1:t)/

∑N
m=1 wt(X̃

m
1:t).

is an estimate at time t of

p(Z̃t|Z̃1:t−1, θ̃1:t) =

∫
wt(X̃1:t)q(X̃t|Z̃t, X̃t−1, θ̃t)×

p(X̃1:t−1|Z̃1:t−1, θ̃1:t−1)dX̃1:t. (12)

In our problem, apart from estimating X̃ , we also need to
estimate the unknown θ̃ so sampling both X̃ and the unknown
θ̃ from the posterior distribution p(θ̃, X̃|Z̃) are required where

p(θ̃, X̃|Z̃) ∝ p(X̃|Z̃, θ̃)p(Z̃|θ̃)w(θ̃).

The MH algorithm is employed with a proposal distribution
of the following form

q(X̃∗, θ̃∗|X̃, θ̃, Z̃) = q(θ̃∗|θ̃, Z̃)p(X̃∗|Z̃, θ̃∗).

Then MH acceptance rate in MMH algorithm is

p(X̃∗, θ̃∗|Z̃)q(X̃, θ̃|X̃∗, θ̃∗, Z̃)

p(X̃, θ̃|Z̃)q(X̃∗, θ̃∗|X̃, θ̃, Z̃)
=
p(Z̃|θ̃∗)w(θ̃∗)q(θ̃|θ̃∗, Z̃)

p(Z̃|θ̃)w(θ̃)q(θ̃∗|θ̃, Z̃)
.

(13)

By using p̂(X̃|Z̃, θ̃) and p̂(Z̃|θ̃) in place of p(X̃|Z̃, θ̃) and
p(Z̃|θ̃) respectively in MH update, the PMMH sampler is
given in algorithm 2 for l = 1, . . . , L.

B. Proposal design

In this section, we will show how to build the proposal
distribution q(·|θ̃, Z̃) by constructing an MC on the space of
θ̃. Instead we construct an MC on an equivalent space. We
define θ̃τ as a track auxiliary variable as follows

θ̃τ = (k, t, j0, . . . , jm) (14)



Algorithm 2 : PMMH algorithm

Input: Given Z̃, pSt , pDt , κt, the birth intensity γt for t =
1, . . . , T and sample number L.
Output: SX(l), Sθ̃(l), and γθ(l) for l = 1, . . . , L.
At iteration l = 1:

- Set θ̃ arbitrarily. Denote Sθ̃(l) = θ̃, then
- run an SMC algorithm targeting p(·|Z̃, θ̃), sample X̃ ∼
p̂(·|Z̃, θ̃) and calculate p̂(Z̃|θ̃). Assign SX(l) = X̃ and
γθ(l) = p̂(Z̃|θ̃).

At iteration l > 1:
- Propose θ̃∗ ∼ q(·|Sθ̃(l − 1), Z̃),
- run an SMC algorithm targeting p(·|Z̃, θ̃∗), sample X̃∗ ∼
p̂(·|Z̃, θ̃∗) and calculate p̂(Z̃|θ̃∗).

- calculate an acceptance rate

α = min

{
1,

p̂(Z̃|θ̃∗)w(θ̃∗)q(Sθ̃(l − 1)|θ̃∗, Z̃)

γθ(l − 1)w(Sθ̃(l − 1))q(θ̃∗|Sθ̃(l − 1), Z̃)

}
- if α ≥ u where u ∼ Unif [0, 1], set SX(l) = X̃∗,
γθ(l) = p̂(Z̃|θ̃∗) and Sθ̃(l) = θ̃∗. Otherwise SX(l) =
SX(l − 1), Sθ̃(l) = Sθ̃(l − 1), γθ(l) =γθ(l − 1).

where k = L(τ), t = T0(τ) and θ̃t+i(k) = (ji, k) for
i = 0, . . . ,m. Hence, the track auxiliary variable θ̃τ contains
information about the measurement association with a track
and has the same properties as track τ such as the same
label i.e. L(θ̃τ ) = L(τ), the same existence duration time i.e.
T(θ̃τ ) = T(τ), the initial time of appearance T0(θ̃τ ) = T0(τ)
and the last time of existence Tf (θ̃τ ) = Tf (τ). For the track
auxiliary variable θ̃τ in (14), we denote the measurement index
of θ̃τ at time t′ by

It′(θ̃τ ) = jt′−t.

Hence the target (labeled) L(τ) is undetected if It′(θ̃τ ) = 0
or generates the measurement zIt′ (θ̃τ ) if It′(θ̃τ ) > 0. We also
denote

θ̃ω =
{
θ̃τ : τ ∈ ω

}
.

Then θ̃ω is called a track hypothesis auxiliary variable. θ̃ω and
θ̃ are equivalent representations of the combination between
tracks and their measurements. Given θ̃ω , for t = 1, . . . , T , θ̃t
is defined by ∅ if t /∈

⋃
θ̃τ∈θ̃ω T(θ̃τ ) otherwise

θ̃t(L(θ̃τ )) = (It(θ̃τ ),L(θ̃τ )), θ̃τ ∈ θ̃ω. (15)

Thus constructing an MC on the space of θ̃ is equivalent
to constructing an MC on the space of θ̃ω . At time t
we denote the clutter of track hypothesis ω by Λt(ω) ={
zj ∈ Zt : j /∈

⋃
τ∈ω{It(θ̃τ )}

}
and the probability going

from θ̃ω to θ̃ω∗ given Z̃ by q(θ̃ω∗ |Z̃, θ̃ω), then q(θ̃∗|Z̃, θ̃) =
q(θ̃ω∗ |Z̃, θ̃ω).

The proposal distribution q(θ̃ω∗ |Z̃, θ̃ω) is constructed using
fourteen proposal moves (illustrated in figure 1) to generate

an ergodic MC on the space of θ̃ω with d̄ as the maximum
number of consecutive missed detection of any targets. These

Fig. 1: Fourteen moves of the MC on the space of θ̃ω with
track gate m∗ = 3 and d̄ = 2 where t3 = t1 + 3, t2 = t3 + 1
and t′2 = t2 − 1. Each move proposes a new track hypothesis
auxiliary variable θ̃ω∗ that modifies the current track hypoth-
esis auxiliary variable θ̃ω . The Birth move (i → h) adds θ̃τ•
which is constructed from the set of clutter

⋃
t∈T Λt(ω) to

node (i) while the death move (h → i) removes θ̃τ• at node
(h). The split move (c → a) splits θ̃τ at node (c) while the
Merge move (a → c) combines θ̃τ and θ̃τ ′ at node (a). The
extension move (d → a) adds measurement index 3 after the
last measurement index of θ̃τ at node (d) while the Reduction
move (a→ d) removes the last measurement index 3 from θ̃τ
at node (a). Similarly, the Backward Extension move (a→ b)
adds measurement index 6 before the first measurement index
of θ̃τ ′ at node (a) while the Backward Reduction (b → a)
move removes the first measurement index 6 from θ̃τ ′ at
node (b). The Switch move (a ↔ e) exchanges measurement
indices between θ̃τ ′ and θ̃τ• . The Extension Merge move
(b → c) merges θ̃τ and θ̃τ ′ at node (b) but removes the first
measurement index at θ̃τ ′ while the Birth Merge move (c→ b)
adds θ̃τ ′ at node (b) starting at measurement index 6 then
merging to θ̃τ at node (c) starting from measurement index
9. The Extension Merge move (d → c) applies to θ̃τ and θ̃τ ′
at node (d) while Delete Split move (c → d) applies to θ̃τ
at node (c). The Extension Merge move (f ↔ g) applies to
θ̃τ and θ̃τ• . The Update move (e↔ f ) applies θ̃τ• while the
Point Update move (a↔ h) applies to θ̃τ .

fourteen proposal moves are classified into ten groups
• Group I: Birth (B)/Death (D)
• Group II: Split (S)/Merge (M)
• Group III: Extension (E)/Reduction (R)
• Group IV: Backward Extension (BE)/Backward Reduc-

tion (BR),
• Group V: Switch (Sw),
• Group VI: Extension Merge (EM)/Birth Merge (BM),
• Group VII: Extension Merge (EM)/Delete Split (DS),
• Group VIII: Extension Merge (EM),



• Group IX: Update (Up),
• Group X: Point Update (PUp).

where the moves in groups I, II, III, V, and IX are from
[17]. The moves from groups IV and X; and three moves
from groups VI, VII and VIII are derived to speed up the
convergence of the MC on the space of θ̃ω . If a group consists
of two moves, one of the moves is a reverse move of the other.
If a group includes only one move, the move and its reverse
move are the same. Denote Kω = |θ̃ω| as the number of tracks
in the track hypothesis ω. The moves proposed on the space
of θ̃ω are briefly explained as follows.
• If Kω = 0, only a birth move is proposed.
• If Kω 6= 0 and Tf (θ̃τ ) = T (i.e. the last existing time

of track τ is the last scan T ), neither Extension move
nor Extension Merge move of θ̃τ is proposed. When
|T(θ̃τ )| = m∗ (i.e. duration time of existence of track τ is
not large than m∗), the Reduction or Backward Reduction
move cannot occur for θ̃τ . When |T(θ̃τ )| ≤ 2m∗, the
Split or Split Delete moves cannot occur for θ̃τ .

• If Kω 6= 0 and T0(θ̃τ ) = 1 (i.e. the first appearance time
of track τ is the first scan), no Backward Extension move
of θ̃τ is proposed.

• If Kω = 1, neither Merge, Extension Merge nor Switch
move occurs.

• In other situations, the moves are uniformly distributed.
Conditional on θ̃ω , a track hypothesis auxiliary variable θ̃ω∗
is chosen subject to the condition above, then θ̃∗ is found by
(15). By the construction of the proposal moves mentioned
above, the acceptance rate in (13) can be written as

p(Z̃|θ̃∗)w(θ̃∗)q(θ̃|θ̃∗, Z̃)

p(Z̃|θ̃)w(θ̃)q(θ̃∗|θ̃, Z̃)
=
p(Z̃|θ̃∗)w(θ̃∗)

p(Z̃|θ̃)w(θ̃)
. (16)

and θ̃ω∗ specifies some track hypothesis ω∗ and hence θ̃∗ is
the sequence of augmented auxiliary variables of X̃1:T (ω∗).
Hence whenever X̃ ∼ q(·|Z̃, θ̃∗), there exists a track hypoth-
esis ω∗ such that X̃ = X̃1:T (ω∗).

Initializing θ̃ arbitrarily in Algorithm 2 makes the com-
putation expensive. This can be alleviated by using estimate
from GM-PHD tracker. Using a good estimate from GM-PHD
tracker reduce the computation cost at least 20 times. Starting
an MC with θ̃ obtained from an estimate X̃G from the GM-
PHD tracker requires us to keep this estimate to reduce the
computation cost. The SMC modified to suit this situation is
called the conditional SMC [9] which only need to sample
N − 1 particles from q(·|Z̃, θ̃).

The pseudocode of SMC Algorithm 3 provides us with
the parameters Bn1:T as the ancestral lineage of the particle
X̃n

1:T . The conditional SMC algorithm conditional on X̃k
1:T =

(X̃
Bk1
1 , . . . , X̃BkT ) is described in algorithm 3 to sample N−1

particles as follows for n = 1, . . . , N .
Based on the PMMH Algorithm 2, the algorithm of PMMH

for MTT is summarized in Algorithm 4

IV. SIMULATION AND PERFORMANCE

In this section, we demonstrate the multi-target PMMH
algorithm with a simulated sample and evaluate its perfor-

Algorithm 3 : Conditional SMC Algorithm
At time t = 1:

- if n 6= Bk1 , sample X̃n
1 ∼ q(·|Z̃1, θ̃1) and compute

w1(X̃n
1 ) by using (7) and normalize Wn

1 ∝ w1(X̃n
1 ).

At t = 2, . . . , T :
- if n 6= Bkt , sample Ant−1 ∼ F(·|Wt−1),
- then sample X̃n

t ∼ q(·|X̃Ant−1

t−1 , Z̃t, θ̃t), set X̃n
1:t =

(X̃
Ant−1

1:t−1, X̃
n
t ) and

- compute wt(X̃
n
1:t) by using (8) and normalize Wn

t ∝
wt(X̃

n
1:t).

Algorithm 4 :PMMH Algorithm for MTT

Input: Given Z̃, pSt , pDt , κt, the birth intensity γt for t =
1, . . . , T and sample number L.
Output: SX(l), Sθ̃(l), and γθ(l) for l = 1, . . . , L.
At iteration l = 1

• Run GM-PHD tracker to obtain X̃G, then obtains θ̃ from
X̃G and denote B1:T = (1, . . . , 1).

• Run a conditional SMC algorithm targeting p(X̃|Z̃, θ̃)
conditional on X̃G and B1:T . Then sample X̃∗ ∼
p̂(·|Z̃, θ̃) and calculate γθ(l) = p̂(Z̃|θ̃). Then denote
SX(l) = X̃∗, Sθ̃(l) = θ̃.

At iteration l > 1

• Propose θ̃∗ ∼ q(·|Sθ̃(l − 1), Z̃) described above in the
proposal move.

• Run an SMC algorithm targeting p(X̃|Z̃, θ̃∗). Then sam-
ple X̃∗ ∼ p̂(·|Z̃, θ̃∗); calculate p̂(Z̃|θ̃∗)

• By (16), the acceptance rate

α = min

{
1,

p̂(Z̃|θ̃∗)w(θ̃∗)

γθ(l − 1)w(Sθ̃(l − 1))

}
• if α ≥ u where u ∼ Unif [0, 1], set SX(l) = X̃∗,

γθ(l) = p̂(Z̃|θ̃∗) and Sθ̃(l) = θ̃∗. Otherwise SX(l) =
SX(l − 1), Sθ̃(l) = Sθ̃(l − 1), γθ(l) =γθ(l − 1).

mance using the Optimal Sub-pattern Assignment distance
(OSPA) [18]. The surveillance area is the square region
R = [−1000m, 1000m] × [−1000m, 1000m]. We use the
surveillance duration of T = 50 scans with sampling interval
Ts = 1 second. We denote xTrt is the transpose of x. The
state vector is xt = [ξt, ζt, ξ̇t, ζ̇t]

Tr where (ξt, ζt) denotes the
target position on 2D Cartesian plane and (ξ̇t, ζ̇t) is its velocity
t = 1, . . . , T . Linear state and measurement models are used

xt = Axt−1 + vt−1, zt = Cxt + wt (17)

where

A =


1 0 Ts 0
0 1 0 Ts
0 0 1 0
0 0 0 1

 , C =


1 0
0 1
0 0
0 0


Tr

,



Q = σ2
v

 T 2
s

4 I2
Ts
2 I2

Ts
2 I2 I2

 , R = σ2
wI2

and where vt and wt are zero mean Gaussian process with
covariance Q and R, respectively; σv = 5m/s is the standard
deviation of the velocity process noise; σw = 10m is the stan-
dard deviation of the measurement noise. The target number
varies from 1 to 50. Targets move at constant speeds uniformly
between 30 and 150 unit lengths per unit time so v̄ = 150.
Targets appear from J = 24 possible locations or can be born
at any time in these J possible locations with intensity

γt(x) =

J∑
i=1

1

J
N (x;m(i)

γ , Pγ)

where Pγ = diag(Pu2
m), P = [100, 100, 25, 25] and u2

m =
uTmum, um =

[
m,m, ms ,

m
s

]
are used to model spontaneous

births in the vicinity of m(i)
γ , i = 1, . . . , J . For illustration,

target spawning is not considered. The ground truth is plotted
with the presence of false alarms in figure 2.

Fig. 2: Ground truth are plotted along with noisy measurements.

Each target survives with probability PS = 0.99 and is
detected with probability PD = 0.8 so the maximum number
of consecutive missed detection at any track is chosen as d̄ =
2. The detected measurements are immersed in clutter that is
modeled as a Poisson RFS Λt with intensity

λc = κtV u

where u is the uniform density over the surveillance region,
V = 4×106m2, κt = 12.5×10(−6)m−2 is intensity function
and λc is the average number of clutter returns per unit volume
(i.e. λc = 50 clutter returns per scan over R).

A. Numerical result and Discussion
The problem of closely spaced and crossing targets cannot

be solved reliably by popular filtering techniques with track

gate m∗ = 3. Our algorithm, PMMH for multi-target tracking,
is designed to deal with this problem. After 141 accepted
times out of 17079 runs, the estimates of the tracks from our
algorithm are plotted against the ground truth in figure 3. The

Fig. 3: The true tracks and estimated tracks from PMMH for MTT
a with GMPHD output as initial state of a Markov chain.

performance of PMMH for MTT is evaluated through OSPA
in figure 4. In this figure, there are some large errors which
occurred at six different time scan periods such as at time
scans t = 1, 5, 39, time intervals 9−10, 41−42 and 47−50.
Figures 5 and 7 explain the origin of these errors. These errors

Fig. 4: The error between initial estimates from a GMPHD
filter shown versus estimates from PMMH for MTT.

result from the miss-detection of the targets when targets first
appear or before the targets disappear from the surveillance
area. Figure 6 shows that the targets in which their states were
not tracked by our algorithm are labeled and their trajectories
are drawn in dashed line with cyan color. For examples, at time
t = 1 the targets (labeled) 3 or 4 are born but not detected.
This is similar to the target 10 at time t = 5. At time t = 9 and
t = 10, the sensor does not detect the target 4 before the target
disappears. This is also the case for the targets 16 and 17 at
time t = 39. At time t = 48, 49 the target 30 is undetected
and again is detected at the last scan T . There is not enough



Fig. 5: Multi-target estimation (cardinality and localization)
errors versus time for GMPHD and the PMMH for MMT.

information for our algorithm to confirm the state as the state
of the target 30. The OSPA Loc also shows that whenever
targets are detected during their existence period the location
error seem to be small. However, the OSPA Card shows that
there is an error during the time period between 47 and 50.
This is because the number of targets during this time period
is not correct. This happens because the target 33 only exists
from time t = 47 to T but is only detected at every second
time instant since t = 48. Therefore the PMMH for MTT
algorithm does not have enough information to distinguish this
target from a false target. This results in the loss of a track in
the output of the PMMH for MTT algorithm.

Fig. 6: Ground truth and its estimates are plotted versus time
in which some states of labeled and cyan colored targets were
not detected by PMMH for MTT algorithm.

B. Conclusion

A batch formulation and solution based on random finite
sets for the MTT problem in a cluttered environment with
low detection probabilities has been proposed in this paper. A
simulation was successfully carried out on a moderately diffi-
cult scenario with medium probability detection (PD = 0.8).

Fig. 7: True cardinality (green line) shown versus estimated
cardinality of initial input (red line)- GMPHD filter, and
PMMH for MTT (blue line).

The trajectories of a variable number of targets were tracked
successfully. Tracking performance was reliable compared to
standard filtering based MTT methods. However, the run-time
cost is high for the batch method.

More difficult scenarios are currently under consideration.
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