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Closed Form Solutions to Forward-Backward
Smoothing

Ba-Ngu Vo, Ba-Tuong Vo, and Ronald P. S. Mahler

Abstract— We propose a closed form Gaussian sum smoother
and, more importantly, closed form smoothing solutions for
increasingly complex problems arising from practice, including
tracking in clutter, joint detection and tracking (in clutter),
and multiple target tracking (in clutter) via the Probability
Hypothesis Density. The solutions are based on the corresponding
forward-backward smoothing recursions that involve forward
propagation of the filtering densities, followed by backward prop-
agation of the smoothed densities. The key to the exact solutions
is the use of alternative forms of the backward propagations,
together with standard Gaussian identities. Simulations are also
presented to verify the proposed solutions.

Index Terms— Smoothing, Filtering, Gaussian Sum Smoother,
PHD, Bernoulli model, target tracking.

I. INTRODUCTION

This paper considers the problem of smoothing for state
space models. These models have attracted considerable re-
search interest for several decades, spanning diverse disci-
plines from statistics, engineering, to econometrics [2], [36].
Smoothing together with filtering and prediction are three
important interrelated problems in state space estimation,
which essentially amount to calculating

Prji(Tr|212) (D

the probability density of the state x;, at time k given the ob-
servation history z1.; = (21,...,2) up to time . Smoothing,
filtering and prediction, respectively, refer to the cases [ > k,
l =k, and | < k. In filtering the objective is to recursively
estimate the current state given the observation history up to
the current time k. Smoothing can yield significantly better
estimates than filtering by delaying the decision time (k) and
using data at a later time (I > k) [24], [12].

Analytic filtering solutions such as the Kalman filter and
Gaussian sum filter, for linear Gaussian and linear Gaussian
mixture models, have opened up numerous research avenues
and pervaded many application areas [14], [27], [1], [2]. For
general non-linear models, Sequential Monte Carlo (SMC) or
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particle filters have recently emerged as powerful numerical
approximations [11], [17], [6], [7].

Research in smoothing has experienced similar develop-
ments as in filtering, except for the smoothing analogue of
the Gaussian sum filter. For general non-linear models, SMC
approximations have been proposed for various smoothing
schemes including smoothing-while-filtering [17], forward-
backward smoothing [13], [6], [10], (generalized) two-filter
smoothing [5], [8], and block-based smoothing [9]. For the
special case of linear Gaussian models, an analytic smoothing
solution exists in the form of the Kalman smoother [2].
However, for linear Gaussian mixture models, the Gaussian
sum smoother—the smoothing analogue of the Gaussian sum
filter—still remains elusive.

Like the Gaussian sum filter, the Gaussian sum smoother
is of great practical importance. Even with linear Gaussian
transition kernel and likelihood function, the filtering density is
inherently non-Gaussian if the initial prior is non-Gaussian. In
time series analysis, linear Gaussian models are not adequate
for handling outliers or abrupt changes in structure [15],
[18]. An analytic smoothing solution for linear Gaussian
mixture model opens up new analytical approximations to non-
Gaussian state-space smoothing since Gaussian mixtures can,
in principle, approximate any density [19].

In many practical problems, such as target tracking, the
standard linear Gaussian mixture model is not adequate and
more sophisticated models are required. One of the most basic
problems is tracking in clutter, where the filtering density is
inherently a Gaussian mixture even with a Gaussian initial
prior and linear Gaussian transition kernel and likelihood
function [3], [21]. Such a problem requires a (state space)
model with finite set observations [21], [31]. Another problem
is joint detection and tracking (in clutter), where the target
of interest may not always be present and exact knowledge of
target existence cannot be determined from observations due to
clutter and detection uncertainty [21], [32]. A Bernoulli (state
space) model (with finite set observations) is required to ac-
commodate presence and absence of the target [32], [34]. Yet
another basic problem, but far more challenging, is multiple
target tracking, where the number of targets varies randomly in
time, obscured by clutter, detection uncertainty and data asso-
ciation uncertainty. Recently, a forward-backward Probability
Hypothesis Density (PHD) recursion has been proposed for
multiple target smoothing [25], [23]. The PHD is intrinsically
multi-modal, indeed, the filtering PHD is a Gaussian mixture
even under linear Gaussian multi-target assumptions [29].
Smoothing for these models has a wide range of applications,
and closed form solutions offer a versatile set of tools.
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In this paper, we propose a Gaussian sum smoother and,
more importantly, analytic smoothing solutions for: state space
models with finite set observations; Bernoulli state space mod-
els; and the PHD. Our solutions are based on corresponding
forward-backward smoothing recursions, each consisting of
a forward pass that propagates the filtering density forward
to time [, followed by a backward pass that propagates the
smoothed density backward to time & < [. The forward
passes can be accomplished analytically via the corresponding
filters, henceforth, our contributions are exact solutions to the
backward smoothing recursions for:

o linear Gaussian mixture models,

« linear Gaussian models with finite set observations,

e linear Gaussian Bernoulli models,

o PHD under linear Gaussian multi-target assumptions'.
The key to these solutions is the application of standard
Gaussian identities to novel alternative forms of the backward
smoothing recursions.

The proposed Gaussian sum smoother is detailed in Section
IT while the closed form smoothing solutions for models
with finite set observations, Bernoulli models, and the PHD
are detailed in Section III. In Section IV, we derive the
canonical solutions to the backward smoothing equations for
these models. Numerical illustrations are presented in Section
V.

II. THE GAUSSIAN SUM SMOOTHER

Brief reviews of forward-backward smoothing and the linear
Gaussian mixture model are provided in subsection II-A. In
subsection II-B we present an alternative form of the backward
recursion, key to the development of our closed form solution.
For clarity of presentation, the Gaussian sum smoother is
developed for a simpler case first in subsection II-C, while
the full Gaussian sum smoother is presented in subsection II-
D.

A. Forward-Backward Smoothing

In a state space model, the state of the system follows a
Markov process on the state space X, with initial prior pg and
transition kernel fi,—1(-|-), i.e. given a state x;_; at time
k — 1, the probability density of a transition to the state xj at
time k is

Srpe—1(Tr]zR—1). (2

This Markov process is partially observed in the observation
space Z as modeled by the likelihood function gi(-|-), i.e.
given a state zy, at time k, the probability density of receiving
the observation z; € Z is

gr(zk|zk)- (3)

Forward-backward smoothing consists of a forward pass that
propagates the filtering density forward to time [, followed by
a backward pass that propagates the smoothing density back-
ward to time k < [ (see for example [15]). More concisely, us-
ing the standard inner product notation (f,g) = [ f(¢

!Preliminary results for the PHD smoother have been announced in the
conference paper [33].

the forward-backward smoothing recursion consists of predic-
tion, update and backward smoothing given respectively by

= (Pr—1je—1> frpp—1(z|)) 4)
gk(zk|$)pk|k 1() )
)
k|l

Pr|k— 1(

Pr|k(T) =
| (gr 2kl Prjp—1

Pk—1|l(33) = pr—1jk—1(2) < P

Pk|k—

Note that for notational compactness we omitted the depen-

dencies on the data in the prediction, filtering and smoothing
densities.

In the forward pass, starting with py;, the prediction densi-
ties pry1jks - Piji—1 and the filtering densities pg1ky1, -
py; are computed via the prediction and update recursion. In
the backward pass, starting with p;; the smoothing densities
Pi—1|i -+, Pr|1 are computed via the backward smoothing re-
cursion.

Let M (-;m, P) denote a Gaussian density with mean m and
covariance P, and define

Nu,r(2;¢) 2 N(2; H, R)

(for appropriate matrices H and R) when we consider
N(z; H(, R) as a function of ¢. The Kalman smoother [2]
is a closed form smoothing solution for the linear Gaussian
(LG) model,

afklk 1(|$)> (6)

po(z) = N(z;mo, Po) (7

fele—1(Clw) = Ny, _1.0i (G 2) ®)

91 (2[¢) = Ny Ry, (25€) ©)

where, mg, Py, Fk‘k,l, Qk, Hg, and Ry are given model

parameters.
In a linear Gaussian mixture (LGM) model,

Zwo (z; mo),Péi)) (10)
]fk\k 1
(4) (-
frie-1(¢lz) = Z W g1 F:iu)‘ Low(Gz) A
= Z W Ng o po (256, (12)
i—1
where m() Po(i),i = 1,...,J0, Flifl)e—l’ Q,(;), i =

o J ¢ kk—1 and gt ), R , i =1,...,Jg 1 are given model
parameters Under LGM assumption, a closed form filtering
solution is the Gaussian sum filter [27], [1], which recursively
propagates forward the (Gaussian mixture) predicted and fil-
tered densities:

Jrlk—1
ml? (4)
Prji—1( Z wk\k N Mk — 17Pk\k—1)’ (13)
ch
Pk (2 ZwklkN T mk‘)k,Plill)c) (14)

However, for smoothing, a closed form solution has not yet
been found, since the quotient of two Gaussian mixtures in (6)
is not necessarily a Gaussian mixture (even if the transition
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density and likelihood are linear Gaussian), see for example
[16] pp. 609.

B. Backward corrector recursion

To facilitate the derivation of the closed form smoothing
solution, we rewrite the update and backward smoothing
recursions (5) and (6) in the following form:

Pr|k(®) = Li (255 2)prjp—1 () (15)
Pr)i1(T) = Pk (7) By (x) (16)
where
gk (2k|7)
Li(z; ) = 17
k(Zk I) <gk(2k") pk\k—1> {an
Buate) = (22 (o)) a9
Pr41|k

with Byj;(-) = 1. The key to solving the backward smoothing
problem is to note that the so-called backward corrector By,
can be recursively computed as follows.

Proposition 1: For k <1,

Bi_1j(z) = (BiuLi(2i; ), frpp—1(|2)) (19)
Proof: It follows from (16) and (15) that
Dkl Di|kBr)i
L _ T = Ly(2x; ) By,
Pr|k—1 Pklk—1

which upon substitution into (18) with k replaced by k£ — 1,
gives (19). O

The backward corrector recursion (19) resembles the infor-
mation filter in the two-filter smoother of [4], [16]. However,
it does not have an information filter interpretation since the
backward corrector is not a probability density. In fact, a filter
interpretation is not necessary for the derivation of a closed
form solution to the backward corrector recursion. Next, we
use this backward corrector recursion to derive closed form
expressions for the backward corrector By, and subsequently
the smoothed density py;.

C. Smoothing for linear Gaussian model with Gaussian mix-
ture prior

The closed form solution to the backward corrector re-
cursion (19) is most easily seen via a simpler special case
of the LGM model. Specifically, the dynamic and measure-
ment models are assumed linear Gaussian, but the prior is a
Gaussian mixture and consequently the prediction and filtered
densities are Gaussian mixtures. The following proposition and
its corollary provide closed form expressions for the backward
corrector By; and the smoothed density py; respectively.

Proposition 2: Under the linear Gaussian dynamic and
measurement model (8), (9), suppose that at time k, the
backward corrector has the form

Ne,..p, (G k)

By(xr) = (20)
Tk
then at time k — 1 the backward corrector is given by
Ney p (G 2 )75 w-1)
By a(wp) = == 1)

Vi (Zk)’l“k

where
N C
Cr = [ o ]Fk|k_1, (22)
. Dy 0 C
Dk:{ o Rk%[HZ}Qk[CE Hy ] @3
Jrjk—1
vi(z) = Z G ———— ur (% i) @4

k|k—1

Proof: Since the measurement model is linear Gaussian (9),
and prediction density is a Gaussian mixture of the form (13),
we have

pk|k 1>

Jr|k—1

Y iy (M () NG iy BL))
=1

(25)

<gk

= vi(2)

by virtue of the convolution of Gaussians in Lemma 18
(Appendix VII-A). Hence,

Ney.. by (Cks xk) Nuy gy, (215 Tk)

By (wr) Li(2r; 21) =

Tk Vk(Zk)
~ Newn, (G 2 )T k)
TV (2k)
where . . .
_ A . X

Using recursion (19) from Proposition 1,
Bi_1j(zr—1) = (BepLi(zk; ), frpp—1(lzr—1))

N" 5 ’1"7 T T7
—< Ck’Dk([ o )aNFkkvak(';xk’_l)>’

Tk (21)

and then using the convolution of Gaussians in Lemma 18
again gives (21), (22). O

Remark: The premise of Proposition 2 is that the back-
ward corrector at time k has the form (20), i.e. Gaussian
in some linear transformation of xj. Using the convention
N,p(¢z) £ 1, where [] is the MATLAB notation for the
null matrix satisfying

and noting that the backward corrector iteration starts with
Bj;p =1, it is clear that the premise of the above Proposition
holds for £ = [. Consequently, it follows by induction from
Proposition 2 that all subsequent backward correctors are
Gaussians in some linear transformations of the state vector.
This result allows the smoothed density to be written as a
Gaussian mixture by using a standard result on products of
Gaussians.

Corollary 3: Under the linear Gaussian dynamic and mea-
surement model (8), (9), the smoothed density py; is a
Gaussian mixture

Jk\k

prp(@ Z%SRW;?&C N (; m;(cﬁ)k(Ck) P;E\Z;)c) (26)
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where
q’(jl)k(c’“) =Ne,, Dk+ckP‘T) CT(Ck’ml(c\)k) 27)
M (Ge) = ml, + KL (G — Crmi,) 28)
By = (- K,i"LOk)P,Ef,’C (29)
K/i\; Plg\zkck (Ch k\kck + Dy (30

and ry, (i, Ck, Dy, are the parameters of the backward correc-
tor Bk‘ 1.

Proof: Using (16), (14), Proposition 2, and then the Gaus-
sian identity in Lemma 19 (Appendix VII-A), the smoothed
density is

= prjk() Br ()
Tk, (3)

Ziwklk/\/(a:'

iz Tk
ch

= Z k|qu|k

Remark: The normalising constant 7, (which is a function of
the measurements z;.;41) is included for completeness, but in
practlce 1t is not necessary. Instead we normalise the weights

Jk|k

{w k|qu|k( %)}y . Further, it is not necessary to compute
the filtering densmes for time k£ + 1 to [. Instead, we only
need (the Gaussians components of) the filtered density py,
and predicted density pyq); because the backward corrector
can be computed without requiring the filtering densities for
time k + 1 to [ (see also section IV-B which gives a full non
recursive expression for By;).

The solution presented bears some resemblance to the
approximation proposed in [16]. The key difference is that [16]
uses a two-filter smoother in which the backward recursion is
approximated by a Kalman filter. Specifically, the approach
in [16] requires C}, is to be invertible, which is not valid in
general (it is not even a square matrix). Our approach does
not treat the backward propagation as an information filter
nor assume C‘k, to be invertible.

Pku(fﬂ)

k\k’ P]§|I)€)ch Dy (C’ﬁ )a

DN (5 m ), (G), PO

D. Smoothing for Linear Gaussian Mixture models

We now present the full Gaussian sum smoother by ex-
tending Proposition 2 to the LGM model. In this case, the
smoothed density is a Gaussian mixture and closed form
solutions for the backward corrector By; and the smoothed
density py; are given respectively by the following proposition
and its corollary. The proofs are omitted because they are
almost identical to that of Proposition 2 and Corollary 3.

Proposition 4: Under the linear Gaussian mixture dynamic
and measurement model (11), (12), suppose that at time k, the
backward corrector has the form

Jrn

Zka o™ pM ) (Crs r) 31)

By ()

then at time k£ — 1 the backward corrector is given by

Jrn Jgk I k-1 kw(]llk w](gh)
1
DRTENTES 3 Db g L =%
h=1i=1 j=1 nl ngk (2k)
ééh,i,.7‘>ﬁ)<€h,i,.7’)([Ck y Rl }T,l’k—l) (32)
where
k H}gz) klk—1
o p® ™ ,
PHlid) _ (J)[O(h)T gOT]
K [ 0 R() H,g” @Oy Hy
(34)
Jrik—1
(4) (7) o ()
v () = D N m0 e po) o (5
=1
(35)

Remark: The premise of Proposition 4 is that the backward
corrector at time k has the form (31), i.e. a Gaussian mixture
in some linear transformation of x;. Noting that the backward
corrector iteration starts with B;; = /\f[],[], it is clear that
the premise of the above Proposition holds for k& = I.
Consequently, it follows by induction from Proposition 4 that
all subsequent backward correctors are Gaussian mixtures in
some linear transformations of the state vector. This result
allows the smoothed density to be written as a Gaussian
mixture.

Corollary 5: Under the linear Gaussian mixture dynamic
and measurement model (11), (12), the smoothed density py;
is a Gaussian mixture

Jein Tk
i,h) (h ~ (i,h i,h)
Prpi(® Z Zwk\)kqli\k KWy, )N(aj ml(qk)(Ck) P/S\k )
h=1 =1
(36)
where
g (Cr) = (Cimiy) BT
ke \Gk C(h) D(h>+c<h>P<‘z>c<h)T ks Mg
~ (i,h i,h h
l(c\k)(Ck) mk|k K;iu@)(g - Cy )mk|k) (38)
i,h i,h (h) (1)
P =1~ K,iwk’c )P (39)
(&,h) _ p(d) (h) p(@) ~(M)T (h)y—
K Pk‘kC (e PGy + DY) L 40)

and (y, (w,C ,C(h) D(h))J’“” are the parameters of the back-
ward corrector By;.

Similar to the previous result, in practice there is no need to
calculate I/]i:)_l(Zk_A'_l) at all. Instead we normalise the weights
after multiplying the backward corrector with the filtered den-
sity. It is also not necessary to compute the filtering densities
for times k + 1 to [. Instead, we only need (the Gaussians
components of) the filtered density py;, and predicted density

Pr+1)k-

III. GAUSSIAN MIXTURE SMOOTHING FOR GENERALIZED
MODELS

While the Gaussian sum smoother considered in the pre-
vious section spans a wide range of applications, it is not
adequate for a larger class of practical problems which require
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more sophisticated models such as state space model with
finite set observations, Bernoulli model, and PHD model. In
subsection III-A we derive a closed form solution to a generic
backward recursion that covers these models. The forward-
backward smoothing recursions and their respective closed
solutions are then given in subsections III-B, III-C for the
finite set observations model, subsections III-D, III-E for the
Bernoulli model, and subsections III-F, III-G for the PHD.

A. Generic Gaussian mixture backward propagation

This subsection presents a closed form solution to a generic
backward recursion that covers smoothing for models with
finite set observation, Bernoulli models, and the PHD. It is
shown in subsequent subsections that these backward recur-
sions can all be recasted in terms of the backward corrector
By, that obeys the following generic backward corrector
recursion (starting with By; = 1)

Bi_1i(x) = qr + o (B Li(Zr; ), Ny 1,01 (52

Li(Zi;x) = ox + > wi(2)Np, r, (2 2)
2EZy

z)) (41)
(42)

where gy, pi, o and wg(z) are real numbers.

Remark: For clarity of presentation, we assume a linear
Gaussian transition kernel. Nonetheless the result can be easily
extended to linear Gaussian mixture transition kernel, albeit
through a rather cumbersome process.

Proposition 6: Suppose that at time k, the backward cor-
rector has the form

Jr|1

Zwk

then applying the generic backward corrector recursion (41),
(42), yields

Byju(x c<>D<>(Ck ;@) (43)

Biap(z )—Qk-i-pk(akBku )+ wi(2) By (x; Z)) (44)

zeZ
where

Jrn
By(x Zwk oo, Dm(Ck ;) (45)
O,i“ = O,i Pt (46)
DY =D + ¢ re”, 47)

Jrn
Byy(; 2) Zwk e, Dm([Ck T T ) (48)
G = {C,i)} F (49)

k o, | Fre-r

(i ()
D,(j) _ {Dk,

0 cW T
& RJJF{ k }Qk[(}k H,ﬂ (50)

Hy,

The proof is similar to Proposition 2, and details are given
in Appendix VII-B.

Remark: The premise of Proposition 6 is that the backward
corrector at time k& has the form (43), i.e. a Gaussian mixture in
some linear transformation of . This premise holds for k = [

since the backward corrector iteration starts with By = N'[],[]'
Consequently, it follows by induction from Proposition 6 that
all subsequent backward correctors are Gaussian mixtures in
some linear transformations of the state.

Remark: Unlike Proposition 4, in which all the components
in the mixture share a common mean (i, in the above result
each component of the mixture has a different mean C 5 9,

B. Linear Gaussian model with finite set observation

In applications such as target tracking, the state-generated
observation is further corrupted by clutter and detection un-
certainty. As a result, the observation is no longer a vector,
but a finite set of vectors with uncertain origin, and a (state
space) model with finite set observations is needed [21], [31].
In such a model the following additional parameters are used
to characterize detection uncertainty and clutter:

pp,k(¢) = probability of detection of state ¢ at time k (51)
ki (2) (52)

The forward-backward smoothing recursion is the same as that
of the standard model, i.e. (4)-(6), with the measurements zj
replaced by a finite set Z; and the following measurement
likelihood [21], [31]:

Poa(Q) Y Ko B gu(210) + ap Q)R
z€4y

= intensity of Poisson clutter at time k

gk(ZkK) = elrel) (53)
where ¢p k() = 1—ppr(¢), h” =T1,c4 h(z). Note that by
convention h? = 1, (even if h = 0).

The linear Gaussian finite set observation (LG-FSO) state
space model assumes a Gaussian mixture initial prior, i.e.
(10), linear Gaussian transition kernel and measurement like-
lihood, i.e. (8), (9), and constant probability of detection.
Note that the LG model is a special case of the LG-FSO
model with pp; = 1 and x; = 0. For the LG-FSO model,
the prediction and filtering densities are Gaussian mixtures
of the form (13), (14). The closed form filtering solution
which recursively propagates forward the Gaussian mixture
prediction and filtering densities can be found in [21], [31].
Due to the non-Gaussian nature of the measurement likelihood,
the filtering density is inherently a Gaussian mixture. A closed
form smoothing solution for LG-FSO models has not been
found.

Replacing the transition density (8) and likelihood (9) in
the LG-FSO model with (11) and (12), we obtain a linear
Gaussian mixture model with FSO.

C. Smoothing for LG-FSO model

The LG-FSO model described in subsection III-B differs
from the conventional state space model only in the likelihood
function (53). Hence, following the arguments of Proposition
1, the backward smoothing recursion for the LG-FSO model
can be rewritten in the form of the generic backward corrector
recursion (41)-(42) with g = 0, pr, = 1 and pseudo-likelihood

9k (Zk|z)
(9 (Zk|"), Drje—1)
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The following result is, thus, a direct consequence of Proposi-
tion 6 (for completeness the proof is given in Appendix VII-B).
Corollary 7: Under the LG-FSO model, suppose that at
time k the backward corrector has the form (43), then
QDJcFikBku( )+PDrk E"%k { }Bk|z(33 z)

2€EZy

B aj(z) =

- (55)
aprkZs +por SR (2)
z€Z},

where v (2), Bku(a:), and Bk”(x) are given respectively by
(24) (45), and (48). Moreover, the smoothed density is a
Gaussian mixture given by

Tei il
Piji(w Zzwk|kwk) éﬁ’lg)(ciii))/\f(x m;(f\}g)(gzg))aﬁzgféj))
i=1 j=1 56

where
Q;(Cﬁk])(Ck ) = C(») D+ P >T(Ck ,m,(fli) (57)
i (G7) = mih + K (G0 = o mi)) (58)
PP = (1- K,S}S)C“ )P;ifk (59)
K = PO O RG0! @

Remark: As in the single-measurement case, the normalising
constant is included for completeness, in practice there is no
need to calculate 1t at all. Instead we normalise the weights
{wklkq](cl)k(zl k+1)}1 1. It is also not necessary to compute the
filtering densities for time k£ + 1 to [. Instead, we only need
(the Gaussians components of) the filtered density pyr, and
predicted density py 1.

D. Linear Gaussian Bernoulli model

The previous models assume that the target is always present
in the scene. In practice, the target of interest may not always
be present and exact knowledge of target existence cannot
be determined from observations due to clutter and detection
uncertainty [21] [32]. A Bernoulli (state space) model (with
finite set observations) is a generalisation of the standard
model, which accommodates presence and absence of the
target, based on random finite set theory [21] [32]. In a
Bernoulli model, the probability law can be specified by a
pair of parameters (r,p), where r is the existence probability
of the target and p is the probability density that describes the
state of the target conditioned on its existence.

In addition to the standard state transition density
frlk—1(:|-), the dynamical description of the Bernoulli model
includes the following parameters:

DR,k|k—1 = probability of entry/reentry at time k (61)

Jr,k|k=1(¢) = density of entry/reentry of state ( at time &

(62)
s, k|1 () = probability of survival to time k given state
at time k£ — 1 (63)

If the target is not in the scene at time k — 1, it can enter (or
re-enter) the scene with probability pg 1 and occupy state
¢ with probability density fg xx—1(¢), or remain absent from

the scene with probability gg gxjx—1 = 1 — pRrkjr—1. On the
other hand, if the target exists and has state x, at time k—1, it
can survive to the next time step with probability pg (x—1 ()
and evolve to state ¢ with probability density fy,—1(¢|z), or
disappear with probability qg yjx—1(z) = 1 — pg kjk—1()

For the measurement model, if the target exists and has state
x, then the likelihood of receiving the measurement Zj, is the
same as (53). Otherwise all measurements must originate from
clutter and the likelihood is then e~ (%1 7%,

The forward-backward propagation for the Bernoulli model
is more complex than those of the previous models since the
existence probability and the density of the state need to be
jointly propagated. For each integer k > 0, let ry; denote
the existence probability of a target at time k£ given the
observation history Z1,; = (Z1,...,Z;) up to time [. Then,
the forward-backward Bernoulli smoothing recursion consists
of the following steps:

o Prediction [34]

Thlk—1 = PRk|k—1(1 = Tho1jp—1)+

T—1lk—1 {PS,k|k—1> Pk—1]k—1) (64)
PR k-1 (1 = Te—16—1) fR,k|k—1(C)
Prk-1(C) = | ! L
Tk|k—1
Tt et {8t St (Cl)s Dot it ) 65)
Tk|k—1
o Update [34]
Tropk—1 {9k (Zk|"), Prj—1)
Tkl = (r V2 ,
W+ﬁc|k—l<gk(Zk|’)7pk|k—1>
(66)
9 (Zk|®)prp—1()
prii () = — (67)

(96 (Zk|"), Prjp—1)
o Backward smoothing [35],
The1p=1— (1 = rp_qp—1)X
Pkl
|:04R,k:l + BRr.k|i < | 7fR,kk1>:| (68)
Pr|k—1
Bj_1i(x)
Bi—1u(2), Pr—1jk-1)

pk—1|l($)=pk—1|k—1($)< (69)

Bj_1i(x) :aS,k|l($)+ﬂS,kl(x)<pI;k) Jrpp (¢ |90)>

(70)
where
B (1 —=r7pp)
ARkl = QR,k\k—lma
Tkl
BR.kll = PRk|k—1 ;
Tk|k—1
(1 —7%p)
askp(r) = QS,k\k—l(x)ma
Tkl
Bs,ki(®) = ps,kjk—1(x) T‘k|k| -
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The linear Gaussian Bernoulli (LG-Bernoulli) model as-
sumes: constant detection probability, Gaussian mixture initial
prior, linear Gaussian transition kernel and measurement like-
lihood, as in the LG-FSO model. Further, the LG-Bernoulli
model assumes constant probability of survival pg rr—1,
constant probability of entry/reentry pr xjx—1, and Gaussian
mixture entry/reentry density, i.e.

JR k-1

(4) ) (4)
TR ( Z wp k|k— mz% = PR = S) (D)

where  Jp k-1, wg,)kw—l’ g)lqk 1’ P}(%]}dk—l’ J =
1,...,Jgkk—1, are given model parameters. Note that the
LG-FSO model is a special case of the LG-Bernoulli model
with rg = 1, DS.klk—1 = 1, PR k|k—1 = 0. For the LG-
Bernoulli model, the prediction and filtering densities are
Gaussian mixtures of the form (13), (14). The closed form
filtering solution which recursively propagates forward the
Gaussian mixture prediction and filtering densities can be
found in [34].

Replacing the transition density (8) and likelihood (9) in the
LG-Bernoulli model with (11) and (12) we have the Gaussian
mixture Bernoulli model.

E. The GM-Bernoulli smoother

This subsection presents the Gaussian mixture smoothing
solution for the LG-Bernoulli model described in subsection
III-D. This model is different from the conventional state space
model due to the uncertainty in the existence of the state. The
Bernoulli smoother propagates the probability of existence in
addition to the probability density.

Similar to the previous smoothing solutions, it is more
convenient to rewrite the Bernoulli backward recursion (69)
in backward corrector form:

Prjk(T) = Li(Z1; 2)prjp—1(x) (72)
Bku(ﬂ?)

- Sl AT 73

Prji(T) = prip(T) Brgio e (73)

where the pseudo-likelihood Lg(Zy;x) is given by (54).

The following proposition shows that the recursion for the

backward corrector falls under the generic backward recursion

(41)-(42) with g = agy and px = Bs i/ (ke Bry)-
Proposition 8: For k <1,

Bs.kll
Bi_1(z) = ag iy + S (BruLi(Zy; ), frpp—1(]2))
{prji- By
(74)
Th—1p =1 — (1 = 7p—1p—1)X
Br.k|l
arkil + 75— (B Lr(Zx; "), [rk|k—
( 'l (prikBrn) (B k1)
(75)
Proof: It follows from (72) and (73) that
, B B
Prn _ DPr|kDE|l _ k|l Li(Ze: ),
Prik—1 (Priks Br) prik—1 (Priks Br)

which upon substitution into (68) and (70) with k replaced by
k — 1, gives (74) and (75), respectively. [

The closed form solution for By; under the Bernoulli model
then follows from the generic solution in Proposition 6. The
complete closed form backward corrector for the Bernoulli
model is given by the following result. The proof is given in
Appendix VII-B.

Corollary 9: Under the LG-Bernoulli model, suppose that
at time k, the backward corrector has the form (43) then at
time k — 1 the backward corrector and smoothed existence
probability are given by

B,k
By _1(z) = ags g + Ly
Vil
ZkB Zk—{Z}B .
qp ik Br(z) +ppr Y Ky, ki (2; 2)
z2€Zy,
Z
QD/cKJk +ppr D, Kp© =, k(2)
2€Z},
I—rp_1p Br Kl
L= rp 1kt Vgl
IcB Zk*{z}ﬁ
4o kKL By +pok Y. Ky k1(2)
2€Z}
7
QDkfik "+ DDk D, KL =, k(2)
Z2EZ)

where vg(z), Bku(aj), Bku(x) are given respectively by (24),
(45), (48) and
Jr1k T

(4)
Zzwkmwk cOpPrcPcy o (¢ ,mk‘k)
j=1li=1

Vi

IR kk—1 T

) (4)
DD Wik X
j=1 =1
()

LowT (Ck YR k|k— )

By =

Ny 1)y ) p)
¢\ Dy 40y PRJ, k|k—

IR kk—1 JE)1
E : E :ka\k lwk '
'L

(4)
I%k\k )

Bij(z

N () D(u)([Ck T m
«) [ ¢l ]
C. = L
[P o
0 Rk
Moreover, the smoothed density is a Gaussian mixture given
by (56)-(60).

~(@)

e ()T

Cy

«(i,5)

Dk P(J)

R,k|k—1

F. Probability Hypothesis Density Smoothing

In a multi-target scenario the number of states and the
states themselves vary with time in a random fashion. This is
compounded by false measurements, detection uncertainty and
data association uncertainty. The PHD (Probability Hypothesis
Density) filter is a multi-target tracking solution that propa-
gates the PHD (or intensity function) of the multi-target state
forward in time [20], [28], [29], [21]. Recently, a forward-
backward PHD smoother has been derived [25], [23].

The underlying model for the PHD filter includes all
model parameters of the Bernoulli model except for the en-
try/reentry probability pgr x|x—1 and entry/reentry state density

)
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JR.k|k—1(-). Instead the appearance of new targets is modelled
by a random finite set of births parameterized by:

(76)

At time k, the expected number of new targets is given by
(Vk|k—1,1) and the density of the new target state is given by
the normalised 7j|x—1, i.e. Yijp—1/ <7k‘k_1, 1>.

Similar to standard forward-backward smoothing, PHD
smoothing consists of three steps: prediction update and back-
ward smoothing. However, the actual PHD propagation equa-
tions are different to those for probability density propagations.
For each integer k > 0, let vy|; denote the PHD at time & given
the observation history Z7.; up to time [. Then, the prediction,
update and backward smoothing steps are given respectively
by:

Ot () = Yoopit (€) + (Vr o1 P ots frpe1 (€1))  (TT)

Yk|k—1 = intensity of birth at time &

y pD k(z)gr(2|7)

km( ) <qD K +2; PD kgr (2| )7Ukk1>>
X Vg1 () (78)

V() = <QS,kk1(33) +ps,k|k1($)<vzkklil ) fk|k1('|37)>>
X Vg (k1 () (79)

A linear Gaussian multi-target (LG-MT) model assumes
Gaussian mixture initial prior, constant probability of survival
and probability of detection, linear Gaussian transition kernel
and likelihood function for each target, as in the LG-Bernoulli
model. Further, for the target birth model, the LG-MT model
assumes a Gaussian mixture birth intensity:

Iy k|1
(@) (@)
Velk—1( Z w'y k| k— N (s 3 ek 17P'y K|k 1): (80)
(@) (@) (4) S
where  J, kjk—1, Wy klk—10 Moy kjk—1> P vklk—10 L =
1,...,Jy kk—1, are given model parameters ‘that determine

the shape of the birth intensity.

The PHD is intrinsically multi-modal, indeed, under LG-
MT assumptions it was shown in [29] that if the initial PHD
is a Gaussian mixture, then all subsequent predicted PHD and
filtered PHD are Gaussian mixtures of the form:

Jr|k—1
(7) (1)
Ukle—1( Z wk\k N (s S —1> Mg s (8D
ch
e Zwklw (@3 1 T, (82)

G. The GMPHD smoother

This subsection presents the Gaussian mixture PHD smooth-
ing solution for the linear Gaussian multi-target model de-
scribed in subsection III-F. Here we deal with a PHD or
intensity function rather than a probability density function.

Similar to the previous smoothing solutions, it is more
convenient to rewrite the PHD update (78) and backward
smoothing (79) in backward corrector form:

Uk () = Vppr—1(2) Li(Zy; )
V(%) = Vg (@) B ()

(83)
(84)

where

. ) pp k() gr(2|7)
Li(Z;2) = qp k() + ZEZZ Kk (2) + (PDkgr(2]), Vkjp—1)

(85)
Byi(z) = qs,k411%6(7) + Ps g1k () <Z::l s e (c |x)>
(86)

Note that the backward corrector starts with By;(z) = 1.
The key to the closed form backward PHD recursion is the

following recursion for the backward corrector term By
Proposition 10: For k <

Bi1i(2) = qs kje1(2) 08 k) 61(2) { Bt Li( Zis -, (- |2))

(87)
Proof: It follows from (84) and (83) that
Vg1 Uk Brt
L THRH = Li(Zk; ) By,
Vk|k—1 Vk|k—1

which upon substitution into (86) with k£ replaced by k£ — 1
gives (87). O

The forward PHD recursion (77), (83) and backward cor-
rector recursion (87) can be thought of as some kind of “two-
filter” PHD smoother. From Proposition 10, the recursion for
the backward corrector falls under the generic form (41)-
(42) with pr = ps k-1 and g = qgkx—1- Hence, from
Proposition 6, we have the following result (for completeness
the proof is given in Appendix VII-B).

Corollary 11: Under linear Gaussian multi-target assump-
tions, suppose that at time &, the PHD backward corrector has
the form (43) then

Biaji(®) = s k-1 + Ps,kjk—1 %

<QDkBk|l( +PDk Z paE

zEZ}y

Bku(l‘;z)
88
)+PD,k77k(2)> (8%)

where Bk‘l(x), Bku(l’) are given respectively by (45), (48)
and

Jrk—1

Z w;(f\i 1

Moreover, the smoothed PHD is a Gaussian mixture given by

()
Hk,Rk—&-HkH(kJ‘L 1HT(Z Hgr—1) (89)

Jepr Tk _
P (2 ZZ k|k k|k N (a; M;(f“z (Ck); 7;\73))’
i=1 j=1
(90)
where
g () = Now o re®ng) b (i) o
~1(cl\kj:)(clc1)) _ﬂl(jﬁc +K1(c\k)( k CISZ Efﬁc) (92)
W = (1= KGO, (93)
Ky =Mo" (@UmRe + D) o)
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IV. CANONICAL SOLUTION

The solutions presented so far are recursive, i.e. the back-
ward corrector at a given time is calculated from the backward
corrector at the previous time. It is of interest to obtain an
explicit (canonical) expression for the backward corrector.
Indeed, the canonical backward corrector is a mixture of Gaus-
sians in some linear transformations of the state. Moreover,
the matrices that parameterise each Gaussian component do
not depend on the measurements and can be pre-computed
analogous to the Kalman gain.

In this section we derive canonical expressions for the back-
ward correctors described in the previous section. Subsection
IV-A presents a set of terse yet suggestive notations that have
natural interpretations in terms of measurement predictions
which enable the derivation of the canonical expression for
the backward corrector in subsection IV-B. Readers interested
in numerical results only can skip this section.

A. Measurement prediction

The notion of measurement prediction described in this
subsection facilitates the derivation of the specific formulae for
the closed form canonical solutions. Given the measurement
matrix H; and measurement covariance R; for ¢ > 0, define

H,; £ H;, Ry, =R;, 95)

and for 2,5 > 0 such that ¢ > j, define
Hyjj1 2 HyiFy)50, (96)
Rijj1 = Ryj + Hij;Q;Hyf;. (97

We also use the obvious short hand [H, R];; when we refer to
the pair H;;, R;; collectively. Thus, to construct [H, R]; ;, we
start with [H, R];; from (95), then repeatedly applying (96),
(97) to construct [H, R];;—1, and [H, R];|;_2, and so forth,
until we reach [H, R]; ;. Note that H;; = H;F;_1 - - - Fjiq);.

The matrices H;; and R;; defined by the recursion
(96), (97) capture the statistics of the measurement at time
1 conditional on the state at time j, in the following sense
(see Appendix VII-C for the proof).

Lemma 12: Under the linear Gaussian dynamic and mea-
surement model (8), (9), given the state x; at time j, the
measurement z; at time ¢ > 7 is Gaussian distributed
with mean H;j;x;, and covariance R;;, i.e. g;;(zi|r;) =
NHz‘|j Ry (Zi; xj)

Hence, the matrices H;; and R;; can be interpreted as
the predicted measurement matrix and predicted measurement
covariance to time ¢ given the state at time j.

We now generalize the notion of measurement prediction to
joint measurements. For 5 > 0 define

Hy; =[], Rgj; =] (98)

where [] is the MATLAB notation for the null matrix. Consider
the set of integers I = {i(1),...,i(|I|)}, where |I| denotes the
cardinality of I, and by convention (1) > i(2) > ... > i(|I|).
In various places, we use the notation k : [ to denote the set
of consecutive integers {k,...,l}. Given I and j > 0 with
i(|I]) > j or I =0, define

Rp; 0O

Hy
Hrogy); & [ F;jlj ], Rugy = [ 0 R, ], 99)

and similarly to (96), (97)
Hijj = HijFjjja (100)
Ryjj—1 2 Ryj + Hy;Q;HY); (101)

Note that Hy;y; = Hj, Ryzy; = RBj. Hyyy = Hyj, and
Ry = R;);. Again, we use the obvious short hand notation
[H, R]7); when we refer to the pair Hjj;, Ryj; collectively.
Thus, to construct [H, R];|; we start with [H, R];(1)}}s1) and
apply the retrodiction operation (100), (101) an appropriate
number of times to obtain [H, R];(1)}ji2); then using the
stacking operation (99), to construct [H, R]f;(1),i(2)}}i(2) and
apply (100), (101) an appropriate number of times to obtain
[H, R]{z‘(l),i(z)}|i(3); and so forth.

We denote the joint measurements at times [ by z; =
[ziT(l),...,ziT(m)]T, i.e. the joint measurement space is Z; =
Zi1y X -« X Zy(q))- The matrices Hy;, Ry; defined by the
recursions (99), and (100), (101) capture the statistics of the
joint measurement z; at times I, conditional on the state at
time j, in the following sense (see Appendix VII-C for the
proof).

Lemma 13: Under the linear Gaussian dynamic and mea-
surement model (8), (9), given the state x; at time j, the
joint measurement z; at times I, with i (|I|) > j, is Gaus-
sian distributed with mean Hyj;z;, and covariance Ry;, i.e.
gl\j(21|$j) = NHI\]’RI\]‘ (ZI; xj)

Hence, the matrices Hy; and Rjj; can be interpreted as
the predicted measurement matrix and predicted measurement
covariance to times I given the state at time j.

B. Canonical solution for the Generic Backward Corrector

In what follows we use the following notation for multiple

sums:

N
PINIEHENDS ST Fziys o zq)s
Z1€Z] zi(1)€Zi(1) Zi(n)€Zi(|1))

with the convention » ., f(zp) = 1 (this is not in conflict

. Z@ @ . .
with >, f(2) = 0). The canonical form of the generic
backward corrector is given by the following proposition (see
Appendix VII-C for the proof).

Proposition 14: The closed form solution to the generic
backward corrector recursion (41), (42) for k < [ is given
by

Bp(z) = Z Z w;ﬁkwl(zl)wﬂkﬂfm,m”k(zﬁ33)
IC{l:k+1} zr€2Z;
(102)
where
max(Lk)+1
,w;r‘k = H pic;+
i=l
max(Lk)+2  max(Lk)+1
Z qj H PiC + Gmax(1,k)+1  (103)
=l i=j-1
wr(zr) = [ [ piwi(z:) (104)
iel
Wy, = II pioi (105)

ie{l:k+1}—(JU{l:max(Lk)+1})
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The canonical form (102) of the backward corrector is a
mixture of Gaussians in Hy,x, where Hy; is the predicted
measurement matrix to times I given the state at time k.
The matrices Hyy, Ry, that parameterise each Gaussian
component do not depend on the measurements and can be
pre-computed from model parameters Fy 1, Qk, Hy, and
Ry.

The index I in the above proposition is an ordered (but
not necessarily consecutive) set of integers taken from {I :
k+1}. The term wy(z;) defined from the set I, is dependent
on the data zj, but the term w;rlk defined from the set {I :
max(I,k)+ 1}, and wy, defined from the remaining indices,
are independent of the data. These three sets of indices form a
partition of the set {l : k+ 1}. When I is empty, the partition
simply reduces to {l: k + 1}.

For the special case ¢; = 0 the summation in w;rlk vanishes
and w;rl , and wl_| & can be combined into one product over the
indices {l : kK + 1} — I and hence

w}"kwj(zj)wl_‘k = H Dic; lewt(zl)
i€{l:k+1}—1 i€l
The LG-FSO model falls under this special case with
pi=1 o= ap.irs” wi(z;) = piamiz’ -
’ VZ(ZZ) ’ Vz(Zz) ’

) Zi—
1/7(Z,L) = qDJ‘KJiZI +pD7Z‘ Z R, {Z}V,L'(Z).
2€7Z;

Consequently, the canonical form of the backward corrector
is given by the following result.

Corollary 15: Under the LG-FSO model, the backward
corrector By for k <1 is given by (102) with

Zj Zi—{zi
[1  apyr [l pparl
(e jeflikr1y—1 il
1(z1 =
Tik Tk [ w(Z)
ie{l:k+1}

Remark: The canonical form of the backward corrector for
the linear Gaussian model with Gaussian mixture initial prior
is the special case pp; = 1, (¢gp,; = 0), k; = 0, and Z; =
{z;}, where every term in the the double sum vanishes except
that with I = {l : kK 4+ 1} (because a product over an empty
set of indices is 1 by convention):

N’[H,R]{lzkﬂ}‘k (Z{l:k+1}§ )

[I wilz)

ie{l:k+1}

By(z) =

This is consistent with the recursive result in Proposition 2.
For the LG-Bernoulli model the result is much more com-
plex. Nonetheless, the LG-Bernoulli backward corrector is still
a special case of Proposition 14.
Corollary 16: Under the LG-Bernoulli model (53), the
backward corrector By; for k <[ is given by (102) with

_ _ Bs.ll _ qpukl
q; _aS,j\la pi = V"l , O = I/(Z) )
i i\ 44
Zi—{zi
i) = P20
i\%i Vi(Zi)

Note that this solution is different from the previous one
in the sense that the parameters g1, px+1 are not defined
purely in terms of predefined constants or model parameters,
but are defined from ag i1, and Bg j1);, Which in turn,
are computed from the smoothed existence probability, density
and corrector in the previous iteration.

The canonical PHD backward corrector is also a special
case of Proposition 14.

Corollary 17: Under the linear Gaussian multi-target
model, the PHD backward corrector By, for k < I is given
by (102) with

qi = 4sS,ili—1, Pi = PS,ili—1, @ = {D,i,
PD,i
wi(2i) + ppini(2i)

W; (Zl) =

V. NUMERICAL EXAMPLES

This section illustrates the proposed closed form forward-
backward smoothing solutions via examples drawn from target
tracking applications. These examples serve as verifications
of our closed form solutions and are not intended as nu-
merical studies of forward-backward smoothing algorithms.
The recursive form of the backward corrector is used in the
computation. Exact implementation of backward smoothing is
exponential in memory requirement as in the forward filtering
step. To manage the number of mixture components, pruning
and merging of components is performed at each time step
using a weight threshold of 77 = 1075, a merging threshold
of U' = 4m, and a maximum of J,,,, = 100 Gaussian
posterior components (see [31] for the exact meaning of these
parameters). In the calculation of the backwards corrector, the
number of Gaussians is capped to [, = 10000 terms in
Demonstration 1 for a Bernoulli model and I,,,, = 50000
terms in Demonstration 2 for the PHD, with preference given
to those components with larger weights.

To quantify the estimation error, an appropriate metric,
known as the optimal sub-pattern assignment (OSPA) metric
[26] is used for both examples since they involve uncer-
tain and time-varying number of targets. Let d'°)(x,y) :=
min (¢, | —y||) for x,y € X, and II; denote the set of
permutations on {1, 2, ..., k} for any positive integer k. Then,
for X = {x1,...,2n}t and Y = {y1,...,Yyn}, the OSPA
metric i is defined as follows:

AP (X, X) & (i ( min S 2 (i, dei))” + c%nm)))
it m < n dY(X,X) & dYX,X)if m > n; and
di (X, X) 2 0if m =n = 0. In this work we use p = 1 and
c = 100m (meters).

A target state comprises target position and velocity, denoted
by Tk = [ Duks Pyks Paks Dy.k |1 at time k. Target generated
observations are position only, denoted by z; = [ 2z &, 2.k |7
at time k. The transition density and likelihood function are
linear Gaussian, i.e. (8), (9) with

I, AL
Frip—1 = {02 [22} , Qr=o0

Hy = [Ia 05],

Al A3
2 | T Tl
Y15 L AL
Rk;:UgIQ
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where A = 1s is the sampling period, 0, = 1m/s?, 0. =
10m, I, and 0,, denote the n x n identity and zero matrices
respectively. Targets are observed within a two dimensional
surveillance region [—1000, 1000]m x [—1000,1000]m. The
noisy measurements are additionally subjected to miss detec-
tions and false alarms. Detection uncertainty is modeled by
a probability of detection, pp ; = 0.98. Clutter is modelled
by a spatial Poisson process with intensity function xi(z) =
AVu(z), where Ao = 1.75 x 1075m~2 is the average
intensity, V = 4 x 10m? is the ‘volume’ of the surveillance
region, and wu(-) is a uniform probability density over the
surveillance region. Note that in the calculation of estimation
errors for the filters and smoothers under consideration, only
the positions are used.

A. Demonstration 1

This demonstration involves a Bernoulli state space model
with the following parameters. If the target is currently
present, it survives to the next time step with probability
of survival pgpixr—1 = 0.99, or hence dies with probabil-
ity 1 — pgpjr—1 = 0.01. If the target is currently absent,
it enters/re-enters the scene with probability pggx—1 =
0.01 and state vector distributed according t0 fg gr—1 =
N(;;mg, Pr) where mr = [ — 400,10,400,—10 ] and
Pgr = diag(] 100, 10, 100, 10 ]7)2, or hence remains absent
with probability 1 — pg rjr—1 = 0.99. The target appear at
times k = 10s, dies at & = 80s and follows the path shown
in Figure 1.

1000

500

arget 1;born k=10;dies k=80 -

y coordinate (m)

-500 1

-1000
—-1000

-500 0 500
x coordinate (m)
Fig. 1. Target trajectory in the xy plane. Start/Stop positions at times k = 10

and k£ = 80 are shown with e/A.

The initial prior is the Bernoulli random finite set density
with zero existence probability and highly diffuse Gaussian
state density. At each time, finite-set-valued state estimates
are extracted according to the smoothed existence probability
and state probability density. If the estimated probability of
existence is less than 50%, an empty set is declared as an
estimate. Otherwise, a singleton target set state estimate is
declared as the mean of the Gaussian component with the
highest filtered or smoothed weight respectively.

The Bernoulli filter and smoothers for lags of up to 3 steps
are compared. Figure 2 shows the average OSPA errors over
1000 trials. These results confirm the observations that the

1000

filter initiates and terminates the track with a one step delay
but otherwise performs well, as seen by the average OSPA
error which peaks markedly at times k£ = 10s and k£ = 81s but
is otherwise flat. The relatively flat average smoothing errors
also confirm that each of the smoothers generally initiate and
terminate the track at the correct times and again as expected
produce more accurate state estimates with longer smoothing
lags.

Filter

Smoother Lag 1
— — — Smoother Lag 2
1 Smoother Lag 3

Avg Error (m)
=
o

100

Time

Fig. 2. Average OSPA errors for the forward filter and backward smoother
with lags of 1,2 and 3 time steps.

B. Demonstration 2

This demonstration presents a multiple target tracking sce-
nario where target can appear or disappear. The PHD forward
filter and backward smoother are used to estimate the intensity
function of the multiple target state. The parameters of the
system model is the same as the previous example, with
PRkk—1 and fg pr—1 replaced by a Poisson target births with
Gaussian intensity v (z) = 0.04N (x;0, 1001y).

The initial prior is the zero intensity function vy = 0. The
number of targets is estimated by rounding the volume of the
intensity function to the nearest integer. Multiple target state
estimates are generated from the estimated intensity function
by extracting the corresponding number of the means from the
filtered or smoothed Gaussian components with the highest
weights [29].

This scenario involves 4 targets for the entire duration. Each
target starts at the origin and respectively heads north, south,
east and west along the principal axes with a constant speed of
5ms~! as indicated in Figure 3. The filter (and smoother) does
not have a priori knowledge of the fixed number of targets.

1000

500

y coordinate (m)

-5001

-1000
-1000

-500 0 500
x coordinate (m)
Target trajectories in the zy plane. Start/Stop positions are shown

1000

Fig. 3.
with e/A.
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Figure 4 shows the and OSPA error over 1000 Monte
Carlo runs. It can be seen that the filter initially incurs some
error in estimating the number of targets and their locations
due to being initialized with a zero intensity. In the case of
the filter, there is a small settling in period before the error
stabilizes to a value indicating that the target tracks have been
properly established. In the case of the smoothers compared
to the filter, the settling in period is shorter and during this
time the error incurred is lower. For the entire duration, the
errors also decrease from the filter to the smoother and with
increasing smoother lag. All of these results are consistent
with expectations.

10° . . . Filter

Smoother Lag 1
— — — Smoother Lag 2
Smoother Lag 3

Avg Error (m)

0 20 40 60 80 100
Time

Fig. 4. Average OSPA errors for the forward filter and backward smoother

with lags of 1,2 and 3 time steps.

VI. CONCLUSIONS

A Gaussian sum smoother and, more importantly, closed
form smoothing solutions for: linear Gaussian model with
finite set observations; linear Gaussian Bernoulli model; and
the PHD under linear Gaussian multi-target assumptions, have
been derived. These solutions are based on alternative forms
of the forward-backward recursions in which the smoothed
densities are the product of corresponding filtered densities and
backward correctors. The backward correctors are mixtures
of Gaussians in some linear transformations of the state and
the smoothed densities are Gaussian mixtures. The matrices
that parameterise each Gaussian component do not depend
on the measurements and can be pre-computed analogous to
the Gaussian sum filter. Numerical results have also been
presented to verify our proposed closed form solutions.

VII. APPENDIX

A. Some standard Gaussian identities

Lemma 18: Given F, ) and H, R of appropriate dimen-
sions, and that () and R are positive definite

WNur(z), N(s Fr,Q)) = (N r(2; ), Nrg(; 7))

= Nurp+uour(z;z)  (106)
Lemma 19: Given H, R, m, and P of appropriate dimen-
sions, and that R and P are positive definite,

N r(z;2)N (z;m, P) = N (z;m, P)NH’R+HPHT(Z; m)

(107)

where
m=m(z,m)=m+ K(z— Hm) (108)
P=(I-KH)P (109)
K =PH"(HPH" + R)! (110)

B. Recursive solution

Proof of Proposition 6: Using the generic pseudo likelihood
(42), we have

Byji(w) Ly, (Zg; )

Jr
—Zakwk oo Dm(Ck ;)
Jk\l
+Z Z w(z wk c< ) pt )(Ck ; )NHk,R;C(Z§x)
1=1 z€Z;,
Jr
—Zakwk oo, Dm(Ck ;)
Jk\l )
+ 30 3 w2 N po (677,27 2) (11D
1=1z€Z;,
where
o[, pp [P 0
k Hy, |7 7k 0 Ry
Hence, using the generic backward corrector recursion (41),
By_1(v) =
Jk” . .
ae+ Y _prenw) (oo 5o (673, Ny, (52)) +
i=1 ' '
Tt
T
Zzpkwk w;C < C< )D( >([ }?)aZT] )NFk\k vak( ) )>
i=1267,

and applying Lemma 18 completes the proof. [

Proof of Corollary 7: Under the LG-FSO model, the
predicted density is a Gaussian mixture of the form (13).
Moreover, using (53),

<gk pk|k 1> =d4p, kﬁf
ook Y ke (Nuy R (20), Prjk-1)
2€Z
= qD.kKY + DDk Z ki Huz)

z2€Z
where the last equality follows from (25). Hence,
QD,kﬁfk +ppE Y, kai{Z}NH;@,Rk (z;2)

Li(Zy;x) = =

ZV_
apurt* +ope X w T P u(z)

2E€EZy
(112)
Consequently, the result follows from Proposition 6 with ¢ =
0, pr = 1. The expression for the smoothed density follows
from along the same line as Corollary 3. [J
Proof of Corollary 9: Under the linear Gaussian Bernoulli
model, the filtered density is Gaussian mixture of the form
(14), and hence,

(Prik, Bry)
Tk Jrn

=3 S wu? (N oo (675 M P
j=11i=1

= Vi
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where the last equality follows from Lemma 18.

The pseudo-likelihood is the same as (112). Hence, it
follows from Proposition 8 that the recursion for the backward
corrector falls under the generic form of the Gaussian mixture
smoother with ¢p = agy; and pr = Bg /v Conse-
quently, the expression for By,_); follows from Proposition 6.
The expression for the smoothed density follows from along
the same line as Corollary 3.

For the probability of existence 74_y);, recall from the
proof of Proposition 6, the expression for By;(x) Ly, (Zy; x) in
(111). Substitute (111) and (71) into (75) and applying Lemma
18 completes the proof. [J

Proof of Corollary 11: Under LG-MT model assumptions,
the predicted PHD is a Gaussian mixture of the form (13).
Hence

<NHk,Rk

Jr|k—1

= Y oy (Mo () N G )
=1

) Vg |k— 1>

= nn(2)
by virtue of Lemma 18. Hence, the pseudo likelihood is

Li(Z;x) =qpi + Z PN (22)

-1'291:>k</\f15rA Ry (25°), Vg ji— 1>

PD, kNHk R (2 )
=m0kt D o)

From Proposition 10, the recursion for the backward corrector
falls under the generic form of the GM smoother with py =
Ps,kk—1 and qx = qg k-1 Hence the result follows from
Proposition 6. The expression for the smoothed density follows
from along the same line as Corollary 3. [J

C. Canonical solution

Proof of Lemma 12: First note from the Markov assump-
tion that the joint density of x;.;, z;.;—1 conditional on x;_;
is given by

p(w;. 3 Zi -11T51)
—1
= H Jer1pk(Try1lze) H%(%Wv)

k=i—1 =1

= p(zij41, Zi:j|$j)fj\j_1(Sﬂj|$j—1)gj—1(zj—1|$j—1) (113)
and hence

Gilj—1 Zl‘xj 1)

// P\ Tizj, 24— lll‘] 1)dzz 1:5— ldxz]

://p(xi:j+1aZi:j|xj)]g‘\j—l(xj|xj—1)gj—1(zj—l‘Ij—l)dzi—l:j—ldl'z’:j

:/[//p(xi:gurl,Zi:j|a?j)dzi_1;jdxi;j+1 Fialailzj)de;
:/gi‘j(z"“”j)fjlj—l(%Ixj—l)dffj

Given any ¢, suppose that the result holds i.e. for j < 1,
9i1j(zil7;) = N, R, , (2i;2;), then it follows from the linear

Gaussian transition kernel (8) and the above equation that

gilj—1(zilzj—1) = (Nu,.r, (255 ), Ney g, (5 25-1))
= NHi\jflvRi\j—l (Zi; xjfl)

by Lemma 18. Thus the result also holds for j—1 Moreover, by
virtue of the linear Gaussian measurement likelihood (9) the
result is true for j = ¢, hence the lemma holds by induction.
O

Proof of Lemma 13: Note that the stacking and retrodiction
operations (99), and (100), (101) and can be used to generate
[H, R]y); for any index set I (whose elements are arranged in
descending order) and j with i (]I]) > j. Hence, it suffices to
show that

g1 (zrlzs) = MH,R]I|_7(ZI§mj) =
gropiyi (Frogy|eg) = N gy, (Frogyiseg) - (114)

91 (z1lz;) = Nia ry, , (21325) =
grj-1(zrlzj—1) = N ry, -, (2rj-132-1) - (115)

Given [ and j with i(|I]) > j, (115) can be shown using
similar arguments as in the proof of Lemma 12. It remains to
show (114)

To show (114), note that gj;(zr|lz;) and
grugjyi(zrugiyle;) can be obtained by marginalising
P(Ti(1):j+15 2i(1):5]2) Over z;(1y,;41 and the z; whose indices
are not in I and I U {j} respectively. Using (113) we have

grogin; (zruggy|zs)

J
= I feriw(zeralzr) I1T gre(zrlzr)dziay v

k=i(1)—1 kelu{j}
j
=/ [T frerir(@rralen) [Ton(zelor) g (25 |25)dairy. 51
i(1)—1 kel

= g11j(21l2;)9;(25]%;)
Thus it follows from the linear Gaussian likelihood function
(9) that

9100yl (zrogy|%5) = Ny oy, (2125 )Ny v (255.25)
= Nt Riru gy (Frogss €)-0

Proof of Proposition 14: For convenience, let wy;(zr) =
wlﬁkwl(z[)wflk. The result holds for the initial step k£ = [,
since applying Proposition 6 with B;; = 1, gives

Bi_1i(z) = q + prou + Z prwi(z20)Nw gy, (205 2)
z1€EZ);

= Z Z wri—1(20)Nw Ry, (2152) (116)

IC{l} 21€Z;

where (T = (1)
_ prwi(z), L =
wri-1(z1) = { (@ +pca), I =0

Suppose that the result hold for k£ + 1, i.e.
By ap(x) = Z Z W k41 (27N R) s, (275 7)
JC{l:k+2} 25€2Z,

where for J C {l: k + 2}

(117)

w.]\k+1(ZJ) =
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max (J,k+IH1

H plal

max(J,kHH2  max(J)+l
Z q; H DiCy; + Qmax(J,k+1)+1

Jj=l i=j—1
Hpiwi(zi) H Dicv
i€l i€{l:k+2}—(JU{l:max(J,k+1)+1})

Then from Proposition 6, and the definitions (100), (101), (99),
By is given by

By(r) = qr1+

Phetd Qe+1 Z Z W k41 (20)NE R s (2757)+
JC{l:k42} 27€2Z5

Pri Y wpa®) >
zGZk+1 Jg{l:k—i—Q}ZJEZJ

which can be expressed in the form (102) by setting

wz\k(ZI) =
Qrt1 + Prr1k 1wkt (o) I = J =0
Prt101W kg (21 I = J, 1 #0,J C{l:k+2}
Prr1 W1 (Zir1)wre1 () 1 = JU{k+1}, J C {1:k+2}
(118)

for I C {l: k+ 1}. It remains to show that (118) is identical
to (103).
For the case I = J = (), max(J,k+ 1) =k + 1 and

k+2 k+3 k+2
w@\k+1 Z@ H pioy + Z q; H Pic; + Qry2 |,
7=l i=j—1
wrk(21) = Qrt1 + Pr+1+1Wo k41 (20)
k+1 k+2  k+1
- H Dpicy; + ZQJ H Dic;
i1

For the case I = J, I ;é 0,J C {l : k+ 2}, note that
max(I, k) = max(I) = max(J) = max(J, k + 1). Hence

max(Lk)+ max(Lk)+1 max(Lk)+1
wJ|k+1(ZJ) = H picy + Z qj H Diy;
_] 1
Hpiwi(zi) H Dic;
ieJ i€{l:k+2}—(JU{l:max(Lk)+1})
(119)
Consequently,

w[\k(zl) = Pk+104k+1w.]|k+1(ZJ)
max(Lk)+1 max(Lk)+1 max(Lk)+

= H pia; + Z q; H yg1e%;
i=j—1
H bic

j=l
( pzwz Zz
i€J i€{l:k+1}—(JU{l:max(L,k)+1})

max(Lk)+1 max(Lk)+1 max(Lk)+1
H Dity +
=l

> 4 Il pies
i=j—1
( plw’b ZZ
el

X

i=l

X

H Pic;

ie{l:k+1}—(JU{l:max(L,k)+1})

Z wi AN [H,R] U oty | k+1( [Z}: < T] % )

For the third case I = JU{k+ 1},J C {l : k + 2},
note that max(J, k + 1) = max(/) = max(J, k) unless J is
empty (in which case the result holds trivially). Hence (119)
holds. Moreover {l : k + 2} — (JU{l: max(I,k) +1}) =
{l:k+1} =T U{l:max(I, k) +1}). Consequently

wrk(21) = Prr1We1(2+1) W k1 (27)
max(Lk)+1 max(Lk)+1 max(Lk)+1

H Dicy; + Z q; H pic;

j=l i=j—1

x Hpiwi(zi) H bic;
1€ JU{k+1} i€{l:k+2}—(JU{l:max(L,k)+1})
max(Lk)+1 max(Lk)+1 max(Lk)+1

= H Dici + Z aj H pity;

j=l i=j—1

X Hpiwi(zi) H yZ1e%;

i€l i€{l:k+1}—(TU{l:max(Lk)+1})

Therefore the result follows by induction. [J
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