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A Multi-Scan Labeled Random Finite Set Model
for Multi-Object State Estimation

Ba-Ngu Vo, and Ba-Tuong Vo

Abstract—State space models in which the system state is
a finite set–called the multi-object state–have generated con-
siderable interest in recent years. Smoothing for state space
models provides better estimation performance than filtering. In
multi-object state estimation, the multi-object filtering density
can be efficiently propagated forward in time using an analytic
recursion known as the Generalized Labeled Multi-Bernoulli
(GLMB) recursion. In this work, we introduce a multi-scan
version of the GLMB model to accommodate the multi-object
posterior recursion, and develop efficient numerical algorithms
for computing this so-called multi-scan GLMB posterior.

Index Terms—State estimation, Filtering, Smoothing, Random
finite sets, Multi-dimensional assignment, Gibbs sampling

I. INTRODUCTION

In Bayesian estimation for state-space models, smoothing
yields significantly better estimates than filtering by using the
history of the states rather than the most recent state [1],
[2], [3]. Conditional on the observation history, filtering only
considers the current state via the filtering density, whereas
smoothing considers the entire history of the states up to the
current time via the posterior density. Numerical computation
of the filtering and posterior densities have a long history and
is still an active area of research [3], [4], [5], [6].

A generalization of state-space models that has attracted
substantial interest in recent years is Mahler’s Finite Set
Statistics (FISST) framework for multi-object system [7], [8],
[9], [10]. Instead of a vector, the state of a multi-object
system–the multi-object state–is a finite set. Numerically,
multi-object state estimation [9], [10] is far more complex
than traditional state estimation due to additional challenges
such as false measurements, misdetection and data association
uncertainty. Several tractable multi-object filters have been de-
veloped, including the Probability Hypothesis Density (PHD)
[7], Cardinalized PHD [8], multi-Bernoulli [9], [11], Dirac
delta mixture random finite set [12], hybrid Poisson multi-
Bernoulli [13], [14], and second-order PHD [15] filters. These
filters, however, are not formulated for estimating (multiple)
trajectories. Using labels (or identities), the history of the
multi-object states, or the multi-object trajectory, is equivalent
to the set of object trajectories [16], [17]. Consequently, multi-
object trajectory estimation can be achieved via estimation
(including filtering) of labeled multi-object states.

In multi-object trajectory estimation, the labeled multi-
object filtering recursion admits an analytic solution via the
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Generalized Labeled Multi-Bernoulli (GLMB) model [16],
[18], which can be efficiently approximated [19]. Recent
research on parametric approximations and extensions [20],
[21], [22], [23], [24], as well as applications such as track-
before-detect [21], [25] multi-object sensor control [26], [27],
[28], simultaneous localization and mapping [29], [30], multi-
object data fusion [31], [32], [33], [34], [35], etc., demonstrate
the versatility of the GLMB model, and suggest that it is an
important tool for multi-object systems.

Since the filtering density only considers information on
the current multi-object state, earlier estimates cannot be
updated with current data. Consequently, apart from poorer
performance compared to smoothing, an important drawback
in a multi-target tracking context is track fragmentation, where
terminated trajectories are picked up again as new evidence
from the data emerges. In contrast, the posterior captures all
information on the multi-object trajectory and eliminates track
fragmentation as well as improving earlier estimates.

Similar to its single-object counterpart, computing the multi-
object posterior is a problem of fundamental importance.
Even in the single-object case, computing the posterior and
its marginals, or smoothing densities, is still an active area
of research [36], [37], [38], [39], [40]. The multi-object
posterior density is essential for characterizing other vari-
ables/parameters pertaining to the underlying set of objects,
other than their trajectories. For example, in cell biology ex-
periments, variables such as cell lifetime, birth rate, death rate,
migration pattern, say after a drug is administered, are more
useful to biologists than cell tracks [41], [42], [43]. The multi-
object posterior enables complete statistical characterization of
these variables (e.g. in terms of their distributions, moments),
whereas the estimated trajectories cannot.

In this paper, we present a multi-scan version of the GLMB
model to accommodate the (labeled) multi-object posterior,
and develop an efficient numerical algorithm for multi-object
smoothing. Interestingly, the (multi-scan) GLMB posterior re-
cursion takes on an even simpler and more intuitive form than
the GLMB filtering recursion. In implementation, however, the
GLMB posterior recursion is far more challenging. Prelim-
inary results on the multi-scan GLMB recursion have been
reported in [44]. The current work provides a comprehensive
treatment, and more importantly algorithms for computing the
multi-scan GLMB posterior.

Like the GLMB recursion, the multi-scan GLMB recursion
needs to be truncated, and as shown in this article, truncation
by retaining components with highest weights minimizes the
L1 truncation error. Unlike the GLMB filtering density, finding
the significant components of a GLMB posterior is an NP-hard
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multi-dimensional assignment problem. To solve this problem,
we extend the Gibbs sampler for the 2-D assignment problem
in [19] to higher dimensions. The resulting technique, capable
of solving large-scale multi-dimensional assignment problems,
can be applied to compute the GLMB posterior off-line in
one batch, or recursively as new observations arrive, thereby
performing smoothing-while-filtering [2].

The remainder of this article is divided into 5 sections. Sec-
tion II summarizes relevant concepts in Bayesian multi-object
state estimation and the GLMB filter. Section III introduces the
multi-scan GLMB model and recursion. Section IV presents
an implementation of the multi-scan GLMB recursion using
Gibbs sampling. Numerical studies are presented in Section V
and conclusions are given in Section VI.

II. BACKGROUND

Following the convention in [16], the list of variables
Xm, Xm+1, ..., Xn is abbreviated as Xm:n, and the inner
product

∫
f(x)g(x)dx is denoted by 〈f, g〉. For a given set S,

1S(·) denotes the indicator function of S, and F(S) denotes
the class of finite subsets of S. For a finite set X , its cardinality
(or number of elements) is denoted by |X|, and the product∏
x∈X f(x), for some function f , is denoted by the multi-

object exponential fX , with f∅ = 1. In addition we use

δY [X] ,

{
1, if X = Y
0, otherwise

for the generalized Kroneker-δ that takes arbitrary arguments.

A. Multi-object States and Trajectories

This subsection summarizes the representation of trajecto-
ries via labeled multi-object states.

At time1 k, an existing object is described by a vector x ∈ X
and a unique label ` = (s, α), where s is the time of birth,
and α is a unique index to distinguish objects born at the
same time (see Figure 1). Let Bs denote the label space for
objects born at time s, then the label space for all objects up
to time k (including those born prior to k) is the disjoint union
Lk =

⊎k
s=0 Bs (note that Lk = Lk−1 ]Bk). Hence, a labeled

state x =(x, `) at time k is an element of X×Lk.
A trajectory is a sequence of labeled states with a common

label, at consecutive times [16], i.e. a trajectory with label
` = (s, α) and states xs, xs+1, ..., xt ∈ X, is the sequence

τ = [(xs, `), (xs+1, `), ..., (xt, `)]. (1)

A multi-object state X is a finite subset of X, and a labeled
multi-object state at time i is a finite subset X of X×Li
constructed by augmenting the elements of X with distinct
labels. Specifically, let L :X×Li → Li be the projection
defined by L((x, `))= `, then X has distinct labels if and only
if the distinct label indicator ∆(X), δ|X|[|L(X)|] equals one.

The labeled states, at time i, of a set S of trajectories defined
to have distinct labels and kinematic states at each time, form
the labeled multi-object state Xi = {τ (i) : τ ∈S}, where τ (i)
denotes the labeled state of trajectory τ at time i.

1This work considers discrete time indices rather than actual times

Consider a sequence Xj:k of such labeled multi-object states
in the interval {j : k}. Let x(`)

i = (x
(`)
i , `) denote the element

of Xi with label ` ∈ L(Xi), and unlabeled state x(`)
i . Then

the trajectory with label ` ∈ ∪ki=jL(Xi) is the sequence of
states with label `:

x
(`)
s(`):t(`) = [(x

(`)
s(`), `), ..., (x

(`)
t(`), `)], (2)

where

s(`) , max{j, `[1, 0]T } (3)

is the start time, in the interval {j : k}, of label `, and

t(`) , s(`) +
∑k
i=s(`)+1 1L(Xi)(`) (4)

is the latest time in {s(`) : k} such that label ` still exists.
Note that s(`) and t(`) are also functions of j and k. The
multi-object state sequence Xj:k can thus be equivalently
represented by the set of all such trajectories, i.e.

Xj:k ≡
{
x

(`)
s(`):t(`) : ` ∈

⋃k
i=j L(Xi)

}
. (5)

The left and right hand sides of (5) are simply different
groupings of the labeled states on the interval {j : k}. The
multi-object state sequence groups the labeled states according
to time while the set of trajectories groups according to labels
(e.g. see Figure 1). Since the (unlabeled) multi-object state is
a finite subset of X, no two trajectories in Xj:k share the same
kinematic state at any time.
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Fig. 1. An example of label assignments (adapted from Figure 1 of [18]).
The two objects born at time 1 (red and white) are given labels (1,1) and
(1,2), while the only object born at time 4 (blue) is given label (4,1). Note
also that the multi-object history X0:k can be represented by two equivalent
groupings: (a) according to time (the vertical strips containing states of the
same time, i.e. the multi-object states) or; (b) according to labels (grey strips
containing states of the same color, i.e. the trajectories).

Hereon, single-object states are represented by lowercase
letters (e.g. x, x), multi-object states are represented by
uppercase letters (e.g. X , X), symbols for labeled states
and their distributions are bolded to distinguish them from
unlabeled ones (e.g. x, X, π, etc.). The term multi-object
state refers to both unlabeled or label multi-object states (the
context is clear from the bolded or unbolded symbols). Given
a sequence of sets Ij:k, with a slight abuse of notation, the
union ∪ki=jIi is written as Ij:k. The context should be clear
when we write I ⊆ Ij:k, ` ∈ Ij:k, and F (Ij:k). Similarly, we
use L(Xj:k) , (L(Xj), ...,L(Xk)) in place of ∪ki=jL(Xi).
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B. Bayes Recursion

Following the Bayesian paradigm, each labeled multi-object
state is modeled as a labeled random finite set (RFS) [16],
characterized by the Finite Set Statistics (FISST) multi-object
density [7], [45]. A labeled RFS is defined as a marked RFS
with distinct marks [16], i.e., a labeled RFS with state space X
and label space L is an RFS of X×L, constructed by marking
the elements of an RFS of X with distinct labels from L (note
that the 2nd clause is implicit from Definition 1 of [16]).

Given the observation history Z1:k, all information on the
set of objects is captured in the multi-object posterior density
π0:k(X0:k) , π0:k(X0:k|Z1:k). Note that the dependence on
Z1:k is omitted for notational compactness. Similar to standard
Bayesian state estimation [2], [3], the (multi-object) posterior
density can be propagated forward recursively by

π0:k(X0:k) =
gk(Zk|Xk)fk|k−1(Xk|Xk−1)π0:k−1(X0:k−1)

hk(Zk|Z1:k−1)
,

(6)
where gk(·|·) is the multi-object likelihood function at time
k, fk|k−1(·|·) is the multi-object transition density to time k,
and hk(Zk|Z1:k−1) is the normalizing constant or predictive
likelihood. A well-defined fk|k−1(·|·) ensures that the multi-
object history X0:k represents a set of trajectories [16].

Markov Chain Monte Carlo (MCMC) approximations of the
multi-object posterior have been proposed in [17] for detection
measurements using Particle MCMC [46], and in [47] for
image measurements using reversible jump MCMC.

A cheaper alternative is the multi-object filtering density,
πk(Xk) ,

∫
π0:k(X0:k)δX0:k−1, which can be propagated

by the multi-object Bayes filter [7], [9]

πk(Xk)

=
gk(Zk|Xk)

∫
fk|k−1(Xk|Xk−1)πk−1(Xk−1)δXk−1

hk(Zk|Z1:k−1)
.

The GLMB filter is an analytic solution to this recursion under
the standard multi-object system model [16]. For more general
models, the multi-object particle filter [25] can be used.

C. Multi-Object System Model

Given a multi-object state Xk−1 (at time k − 1), each
state xk−1 = (xk−1, `k−1) ∈ Xk−1 either survives with
probability PS,k−1(xk−1) and evolves to a new state (xk, `k)
with probability density fS,k|k−1(xk|xk−1, `k−1)δ`k−1

[`k] or
dies with probability QS,k−1(xk−1) = 1 − PS,k−1(xk−1).
Further, for each `k in a (finite) birth label space Bk at time k,
either a new object with state (xk, `k) is born with probability
PB,k(`k) and density fB,k(xk, `k), or unborn with probability
QB,k(`k) = 1−PB,k(`k). The multi-object state Xk (at time k)
is the superposition of surviving states and new born states.
The multi-object transition density fk|k−1(Xk|Xk−1), given
by equation (6) of [18], is constructed from Mahler’s multi-
object transition density by marking (unlabeled) multi-object
states with distinct labels. Hence, no two elements of a multi-
object state shares the same kinematic or unlabeled state.

Given a multi-object state Xk, each xk ∈ Xk is either
detected with probability PD,k(xk) and generates a detec-
tion z with likelihood gD,k(z|xk) or missed with probability

QD,k(xk) = 1−PD,k(xk). The multi-object observation Zk is
the superposition of the observations from detected objects and
Poisson clutter with intensity κk. Assuming that, conditional
on Xk, detections are independent of each other and clutter,
the multi-object likelihood function is given by [16], [18]

gk(Zk|Xk) ∝
∑
θk∈Θk

1Θk(L(Xk))(θk)
[
ψ

(θk◦L(·))
k,Zk

(·)
]Xk

(7)

where Θk denotes the set of maps θk : Lk → {0:|Zk|} that
are positive 1-1 (i.e. θk never map distinct arguments to the
same positive value), Θk(I) denotes the subset of Θk with
domain I , θk ◦ L(x) = θk(L(x)), and

ψ
(i)
k,{z1:m}(x, `) =

{
PD,k(x,`)gD,k(zi|x,`)

κk(zi)
, i > 0

QD,k(x, `), i = 0
, (8)

The map θk assigns a detected label ` to measurement zθk(`) ∈
Zk, while for an undetected label θk(`) = 0.

D. GLMB Filtering Recursion

A generalized labeled multi-Bernoulli (GLMB) density on
F(X× L) has the form [16]:

π(X) = ∆(X)
∑
ξ∈Ξ

w(ξ)(L(X))[p(ξ)]X, (9)

where Ξ is a discrete index set, each p(ξ)(·, `) is a probability
density on X, i.e.,

∫
p(ξ)(x, `)dx = 1, and each w(ξ)(L) is

non-negative with
∑
L⊆L

∑
ξ∈Ξ w

(ξ)(L) = 1. The GLMB
density (9) can be interpreted as a mixture of multi-object
exponentials, where the weights are functions of the labels.

The GLMB family is closed under the Bayes multi-object
filtering recursion and an explicit expression relating the
filtering density at time k to that at time k − 1 is given by
(14) of [19]. This recursion can be expressed as follows.

Given the GLMB filtering density at time k − 1,

πk−1(Xk−1) = ∆(Xk−1)
∑
ξ∈Ξ

w
(ξ)
k−1(L(Xk−1))[p

(ξ)
k−1]Xk−1 ,

(10)
the GLMB filtering density at time k is

πk(Xk) (11)

∝ ∆(Xk)
∑

ξ,θk,Ik−1

ω
(ξ,θk)
k (Ik−1)δD(θk)[L(Xk)][p

(ξ,θk)
k ]Xk ,

where θk ∈ Θk, Ik−1 ∈ F(Lk−1), D(θk) is the domain of θk,

ω
(ξ,θk)
k (Ik−1) = 1F(Bk]Ik−1)(D(θk))[ω

(ξ,θk)
k|k−1 ]Bk]Ik−1w

(ξ)
k−1(Ik−1)

(12)

ω
(ξ,θk)
k|k−1(`) =


Λ̄

(θk(`))
B,k (`), `∈D(θk) ∩ Bk

Λ̄
(ξ,θk(`))
S,k|k−1(`), `∈D(θk)− Bk

QB,k(`), `∈D(θk) ∩ Bk
Q̄

(ξ)
S,k−1(`), `∈D(θk)− Bk

, (13)

p
(ξ,θk)
k (x, `) =


Λ

(θk(`))

B,k (x,`)

Λ̄
(θk(`))

B,k (`)
, `∈D(θk) ∩ Bk〈

Λ
(θk(`))

S,k|k−1(x|·, )̀,p
(ξ)
k−1(·, )̀

〉
Λ̄

(ξ,θk(`))

S,k|k−1
(`)

, `∈D(θk)− Bk
, (14)
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Λ
(j)
B,k(x, `) = ψ

(j)
k,Zk

(x, `)fB,k(x, `)PB,k(`), (15)

Λ
(j)
S,k|k−1(x|ς, )̀ = ψ

(j)
k,Zk

(x, `)fS,k|k−1(x|ς, `)PS,k−1(ς, `), (16)

Q̄
(ξ)
S,k−1(`) = 〈QS,k−1(·, `), p(ξ)

k−1(·, `)〉, (17)

Λ̄
(j)
B,k(`) = 〈Λ(j)

B,k(·, `), 1〉, (18)

Λ̄
(ξ,j)
S,k|k−1(`) =

∫
〈Λ(j)

S,k|k−1(x|·, `), p(ξ)
k−1(·, `)〉dx. (19)

III. GLMB POSTERIOR RECURSION

This section presents a multi-scan version of the GLMB
model, and subsequently a multi-scan GLMB recursion.

A. Multi-Scan GLMB
Recall the equivalence between the multi-object state se-

quence Xj:k and the set {x(`)
s(`):t(`) : ` ∈ L(Xj:k)} of tra-

jectories in (5). Noting from (2) that x(`)
s(`):t(`) is completely

characterized by ` and its kinematic states x(`)
s(`):t(`), we use

x
(`)
s(`):t(`) ≡ (x

(`)
s(`):t(`), `).

For any function h taking the trajectories to the non-negative
reals, we introduce the following so-called multi-scan expo-
nential notation:

[h]
Xj:k , [h]

{
x

(`)

s(`):t(`)
: `∈L(Xj:k)

}
=

∏
`∈L(Xj:k)

h(x
(`)
s(`):t(`)) (20)

This notation is quite suggestive of the exponential property
in the following Lemma (see Appendix VII-B for the proof).

Lemma 1. Let Xj:k be a sequence of multi-object states
(generated by a set of trajectories) and g, h be two functions
taking trajectories to the reals. Then:

(i) [g h]
Xj:k = [g]

Xj:k [h]
Xj:k

(ii) For a multi-object state sequence Yj:k with labels
disjoint from those of Xj:k,

[h]
Xj:k]Yj:k = [h]

Xj:k [h]
Yj:k

(iii) For any i in {j:k}

[g]
Xj:i [h]

Xi:k = [g � h]
Xj:k ,

where

(g � h)(x
(`)
s(`):t(`)) =


h(x

(`)
s(`):t(`)), i < s(`)

g(x
(`)
s(`):i)h(x

(`)
i:t(`)), s(`) ≤ i ≤ t(`)

g(x
(`)
s(`):t(`)), t(`) < i

,

s(`) and t(`), given by (3) and (4) are, respectively, the starting
and terminating times on {j : k} for label `.

Using multi-scan exponential notation, the multi-object tran-
sition density given in [16] can be written tersely as follows
(for completeness the proof is given in Appendix VII-C).

Proposition 2. For the multi-object dynamic model described
in subsection II-C, the multi-object transition density is

fk|k−1(Xk|Xk−1) = (21)

∆(Xk)1F(Bk]L(Xk−1))(L(Xk))Q
Bk−L(Xk)
B,k

[
φk−1:k

]Xk−1:k

where

φk−1:k(x
(`)
s(`):t(`), `) = (22)

PB,k(`)fB,k(x
(`)
k , `), s(`) = k

PS,k−1(x
(`)
k−1, `)fS,k|k−1(x

(`)
k |x

(`)
k−1, `), t(`) = k > s(`)

QS,k−1(x
(`)
k−1, `), t(`) = k − 1

Definition 1. A density on F(X× Lj)× ...× F(X× Lk) is
multi-scan GLMB if it has the form

π(Xj:k) = ∆(Xj:k)
∑
ξ∈Ξ

w
(ξ)
j:k(L(Xj:k))[p

(ξ)
j:k]Xj:k (23)

where: Ξ is a discrete set; ∆(Xj:k),
∏k
i=j ∆(Xi); w(ξ)

j:k(Ij:k),
(ξ, Ij:k) ∈ Ξ×F(Lj)× ...×F(Lk) is non-negative with∑

ξ,Ij:k

w
(ξ)
j:k(Ij:k) = 1; (24)

and p
(ξ)
j:k(·, `), ξ ∈ Ξ, ` ∈ L(Xj:k), defined on Xt(`)−s(`)+1

with starting and terminating times s(`) and t(`) on {j : k},
given by (3) and (4), satisfies∫

p
(ξ)
j:k(xs(`):t(`), `)dxs(`):t(`) = 1. (25)

Similar to the GLMB, the multi-scan GLMB (23) can be
expressed in the so-called δ-form:

π(Xj:k) = ∆(Xj:k)
∑
ξ,Ij:k

w
(ξ)
j:k(Ij:k)δIj:k [L(Xj:k)][p

(ξ)
j:k]Xj:k

(26)
Each term or component of a multi-scan GLMB consists of a
weight w(ξ)

j:k(Ij:k) and a multi-scan exponential [p
(ξ)
j:k]Xj:k with

label history that matches Ij:k. The weight w(ξ)
j:k(Ij:k) can be

interpreted as the probability of hypothesis (ξ, Ij:k), and for
each ` ∈ Ij:k, p(ξ)

j:k(·, `) is the joint probability density of its
(trajectory) kinematic states, given hypothesis (ξ, Ij:k).

Proposition 3. For a function f : F(Lj)× ...×F(Lk)→ R,
its integral with respect to the multi-scan GLMB (23) is∫

f(L(Xj:k))π(Xj:k)δXj:k =
∑
ξ,Ij:k

f(Ij:k)w
(ξ)
j:k(Ij:k) (27)

where (ξ, Ij:k) ∈ Ξ × F(Lj) × ... × F(Lk). See Appendix
VII-D for proof.

By setting f to 1 in the above proposition, the multi-scan
GLMB integrates to 1, and hence, is a FISST density. Some
useful statistics from the multi-scan GLMB follow from the
above proposition for suitably defined functions of the labels.

Corollary 4. The cardinality distribution, i.e. distribution of
the number of trajectories is given by

Pr(|L(Xj:k)| = n) =
∑
ξ,Ij:k

δn[|Ij:k|]w(ξ)
j:k(Ij:k) (28)

Corollary 5. The joint probability of existence of a non-empty
set of trajectories with labels L is given by

Pr(L exist) =
∑
ξ,Ij:k

1F(Ij:k)(L)w
(ξ)
j:k(Ij:k), (29)
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and as a special case

Pr(` exists) =
∑
ξ,Ij:k

1Ij:k(`)w
(ξ)
j:k(Ij:k). (30)

Corollary 6. The distribution of trajectory lengths is given by

Pr (a trajectory has length m)

=
∑
ξ,Ij:k

w
(ξ)
j:k(Ij:k)

|Ij:k|
∑
`∈Ij:k

δm[t(`)− s(`) + 1] , (31)

and the distribution of the length of trajectory with label ` is

Pr (length(`) = m)

=
∑
ξ,Ij:k

δm[t(`)− s(`) + 1] 1Ij:k(`)w
(ξ)
j:k(Ij:k). (32)

Corollary 7. The cardinality distributions of births and deaths
at time u ∈ {j : k} are given by

Pr (n births at time u)

=
∑
ξ,Ij:k

w
(ξ)
j:k(Ij:k)δn

[∑
`∈Ij:k δu(s(`))

]
, (33)

Pr (n deaths at time u)

=
∑
ξ,Ij:k

w
(ξ)
j:k(Ij:k)δn

[∑
`∈Ij:k δu(t(`))

]
, (34)

Similar to its single-scan counterpart, a number of estima-
tors can be constructed for a multi-scan GLMB. The simplest
would be to find the multi-scan GLMB component with the
highest weight w(ξ)

j:k(Ij:k) and compute the most probable or
expected trajectory estimate from p

(ξ)
j:k(·, `) for each ` ∈ Ij:k.

Alternatively, instead of the most significant, we can use the
most significant amongst components with the most probable
cardinality n∗ (determined by maximizing (28)).

Another class of estimators, based on existence probabil-
ities, can be constructed as follows. Find the set of labels
L∗ with highest joint existence probability by maximizing
(29). Alternatively, we can choose L∗ as the label set of
cardinality n∗ with highest joint existence probability, or the
set of n∗ labels with highest individual existence probabilities.
For each ` ∈ L∗, we determine the most probable length m∗

by maximizing (32) and compute the trajectory density

pj:k(·, `)
∝

∑
ξ,Ij:k

δm∗ [t(`)−s(`)+1] 1Ij:k(`)w
(ξ)
j:k(Ij:k)p

(ξ)
j:k(·, `),

from which the mode or mean trajectory can be determined.

B. Closure Under Bayes Recursion

Conceptually, a multi-scan GLMB is simply a GLMB where
the argument is a set of labeled trajectories represented by
Xj:k, and hence is closed under the Bayes recursion [16].

Multiplying the multi-scan GLMB

π(Xj:k−1) = (35)

∆(Xj:k−1)
∑
ξ∈Ξ

w
(ξ)
j:k−1(L(Xj:k−1))

[
p

(ξ)
j:k−1

]Xj:k−1

,

by fk|k−1(Xk|Xk−1) in (21), and using Lemma 1 (iii) to
“stitch” [p

(ξ)
j:k−1]Xj:k−1 and

[
φk−1:k

]Xk−1:k together, yields a
multi-scan GLMB prediction density of the form (23), with

p
(ξ)
j:k = p

(ξ)
j:k−1� φk−1:k, (36)

w
(ξ)
j:k(Ij:k) = w

(ξ)
j:k−1(Ij:k−1)1F(Bk]Ik−1)(Ik)QBk−Ik

B,k . (37)

Further, the measurement likelihood for Xj:k has the same
exponential-mixture form as (54) in [16], i.e.

gk(Zk|Xj:k) ∝
∑
θk∈Θk

1Θk(L(Xk))(θk)
[
ψ

(θk◦L(·))
j:k,Zk

(·)
]Xj:k

,

with

ψ
(i)
j:k,Zk

(xs(`):t(`), `) =

{
ψ

(i)
k,Zk

(xt(`), `), t(`) = k

1, t(`) < k
,

where θk ◦ L(τ ) = θk(L(τ )), and t(`), given by (4), is the
terminating time on {j : k} for label ` (since trajectories
terminated before time k do not contribute to Zk). Thus, the
multi-scan GLMB prior (23) is closed under Bayes update,
and its posterior given by (19) of [16], i.e.,

π(Xj:k|Zk) ∝ ∆(Xj:k)
∑
ξ,θk

w
(ξ,θk)
j:k (L(Xj:k))

[
p

(ξ,θk)
j:k

]Xj:k

(38)
where ξ ∈ Ξ, θk ∈ Θk,

p
(ξ,θk)
j:k (·, `) =

p
(ξ)
j:k(·, `)ψ(θk(`))

j:k,Zk
(·, `)

ψ̄
(ξ,θk)
j:k,Zk

(`)
(39)

ψ̄
(ξ,θk)
j:k,Zk

(`) =
〈
p

(ξ)
j:k(·, `), ψ(θk(`))

j:k,Zk
(·, `)

〉
(40)

w
(ξ,θk)
j:k (Ij:k) = 1Θk(Ik)(θk)w

(ξ)
j:k(Ij:k)

[
ψ̄

(ξ,θk)
j:k,Zk

]Ij:k
(41)

Remark: A similar version of the GLMB Bayes update (38)
was derived in [48] using a sophisticated approach based on
probability density of random sets of trajectories. Interestingly,
[48] is the first to undertake the development of probability
densities on the space of all finite subsets of the disjoint union
of Cartesian products of X× L (or X). This is fundamentally
different from the standard state-space estimation paradigm
followed in our work, where densities are defined on the
Cartesian product of the state-space [2], [3], [49]. Other
main differences from (38) are: sample sets of trajectories do
not necessarily have distinct labels; and the weights in the
posterior probability density are independent of the argument.

C. Multi-Scan GLMB Posterior Recursion

Setting j = 0 in the GLMB update (38)-(41) and expanding
the parameters (for completeness see Appendix VII-E) yields
an explicit multi-scan GLMB posterior recursion.

Proposition 8. Under the standard multi-object system model,
if the multi-object posterior at time k − 1 is

π0:k−1(X0:k−1) = (42)

∆(X0:k−1)
∑
ξ∈Ξ

w
(ξ)
0:k−1(L(X0:k−1))[p

(ξ)
0:k−1]X0:k−1 ,
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then the multi-object posterior at time k is

π0:k(X0:k) ∝ (43)

∆(X0:k)
∑
ξ,θk

ω
(ξ,θk)
0:k (L(X0:k−1))δD(θk)[L(Xk)][p

(ξ,θk)
0:k ]X0:k

where ξ ∈ Ξ, θk ∈ Θk, D(θk) is the domain of θk,

ω
(ξ,θk)
0:k (I0:k−1) = (44)

1F(Bk]Ik−1)(D(θk))
[
ω

(ξ,θk)
k|k−1

]Bk]Ik−1

w
(ξ)
0:k−1(I0:k−1)

ω
(ξ,θk)
k|k−1(`) =


Λ̄

(θk(`))
B,k (`), `∈D(θk) ∩ Bk

Λ̄
(ξ,θk(`))
S,k|k−1(`), `∈D(θk)− Bk

QB,k(`), `∈D(θk) ∩ Bk
Q̄

(ξ)
S,k−1(`), `∈D(θk)− Bk

, (45)

p
(ξ,θk)
0:k (xs(`):t(`), `) = (46)

Λ
(θk(`))

B,k (xk,`)

Λ̄
(θk(`))

B,k (`)
, s(`) = k

Λ
(θk(`))

S,k|k−1
(xk|xk−1,`)p

(ξ)
0:k−1(xs(`):k−1,`)

Λ̄
(ξ,θk(`))

S,k|k−1
(`)

, t(`) = k > s(`)

QS,k−1(xk−1,`)p
(ξ)
0:k−1(xs(`):k−1,`)

Q̄
(ξ)
S,k−1(`)

, t(`) = k − 1

p
(ξ)
0:k−1(xs(`):t(`), `), t(`) < k − 1

The multi-scan GLMB posterior recursion (42)-(46) bears
remarkable resemblance to the GLMB filtering recursion (10)-
(15). In essence, it is the GLMB filtering recursion without the
marginalization of past labels and kinematic states. Indeed, the
weight increments for multi-scan GLMB and GLMB compo-
nents are identical. Arguably, the multi-scan GLMB recursion
is more intuitive because it does not involve marginalization
over previous label sets nor past states of the trajectories.

The multi-scan GLMB recursion initiates new born trajec-
tories, updates surviving trajectories, terminates disappearing
trajectories, and stores trajectories that disappeared earlier.
Noting that ` ∈ D(θk)∩Bk is equivalent to s(`) = k, initiation
of new trajectories is identical to that of the GLMB filter.
Noting ` ∈ D(θk)− Bk is equivalent to t(`) = k > s(`), the
update of surviving trajectories is the same as the GLMB filter,
but without marginalization of past kinematic states. On the
other hand, termination/storing of disappearing/disappeared
trajectories are not needed in the GLMB filter.

IV. COMPUTING MULTI-SCAN GLMB POSTERIORS

The number of terms of the multi-scan GLMB posterior
grows super-exponentially in time and it is necessary to find
a tractable approximation. Functional approximation criteria,
e.g. Lp-norm, or divergences such as Kullback-Leibler [21],
Renyi, Cauchy-Schwarz [50], [26], can be extended to the
multi-scan case. The main challenge is: given a prescribed
number of terms, what is the best multi-scan GLMB approx-
imation of the posterior, without exhaustive enumeration?

Using the same lines of arguments as Proposition 5 of [18],
the L1-error between a multi-scan GLMB and its truncation
is given by the following result.

Proposition 9. Let ‖f‖1 ,
∫
|f(Xj:k)|δXj:k denote the L1-

norm of f : F(X×Lj)×...×F(X×Lk) → R, and for a given
H ⊆ Ξ×F(Lj)×...×F(Lk) let

fH(Xj:k) , ∆(Xj:k)
∑

(ξ,Ij:k)∈H

w(ξ)(Ij:k)δIj:k [L(Xj:k)][p(ξ)]Xj:k

be an unnormalized multi-scan GLMB density. If T ⊆ H then

‖fH − fT‖1 =
∑

(ξ,Ij:k)∈H−T

w(ξ)(Ij:k),∥∥∥∥ fH
||fH||1

− fT
||fT||1

∥∥∥∥
1

≤ 2
||fH||1 − ||fT||1
||fH||1

.

Hence, given a multi-scan GLMB posterior, the minimum
L1-norm approximation for a prescribed number of terms
can be obtained by keeping only those with highest weights.
Furthermore, this can be accomplished, without exhaustive
enumeration, by solving the multi-dimensional assignment
problem [51]. This problem is NP-hard for more than two
scans, and state-of-the-art algorithms cannot handle more than
10 scans with about 20 measurements per scan; see for
example [52] and references therein.

This section presents efficient techniques for computing
multi-scan GLMB posteriors by Gibbs sampling. Subsection
IV-A formulates multi-scan GLMB posterior truncation as a
multi-dimensional assignment problem, while solutions are
developed in subsections IV-B and IV-C.

A. Canonical Multi-Scan GLMB Posterior

To express the multi-scan GLMB posterior in canonical
form, we represent each θk ∈ Θk by an extended association
map γk : Lk → {−1:|Zk|} defined by

γk(`) =

{
θk(`), if ` ∈ D(θk)
−1, otherwise . (47)

Let Γk denote the set of positive 1-1 maps from Lk to
{−1:|Zk|}, and (with a slight abuse of notation) denote the
live labels of γk, i.e. the domain D(θk), by

L(γk) , {` ∈ Lk : γk(`) ≥ 0}.

Then for any γk ∈ Γk, we can recover θk ∈ Θk by θk(`) =
γk(`) for each ` ∈ L(γk). Hence, there is a bijection between
Θk and Γk, and θ1:k can be completely represented by γ1:k.

Starting with the initial prior π0(X0) = δ0[L(X0)], and
iteratively applying Proposition 8, the posterior at time k is:

π0:k(X0:k) ∝ (48)

∆(X0:k)
∑
γ0:k

w
(γ0:k)
0:k δL(γ0:k)[L(X0:k)]

[
τ

(γ0:k◦L(·))
0:k (·)

]X0:k

where L(γ0) , ∅,

w
(γ0:k)
0:k = (49)

w
(γ0:k−1)

0:k−1 1Γk(γk)1F(Bk]L(γk−1))
(L(γk))[η

(γ0:k(·))
k|k−1 (·)]Bk]L(γk−1)
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η
(js(`):k)

k|k−1 (`) (50)

=


Λ̄

(jk)
B,k (`), `∈Bk, jk≥ 0

Λ̄
(js(`):k)

S,k|k−1(`), `∈Lk−1, jk≥ 0

QB,k(`), `∈Bk, jk< 0

Q̄
(js(`):k−1)

S,k−1 (`), `∈Lk−1, jk< 0

τ
(js(`):k)

0:k (xs(`):t(`), `) (51)

=



Λ
(jk)

B,k (xk,`)

Λ̄
(jk)

B,k (`)
, s(`) = k

Λ
(jk)

S,k|k−1
(xk|xk−1,`)τ

(js(`):k−1)

0:k−1 (xs(`):k−1,`)

Λ̄
(js(`):k)

S,k|k−1
(`)

, t(`) = k > s(`)

QS,k−1(xk−1,`)τ
(js(`):k−1)

0:k−1 (xs(`):k−1,`)

Q̄
(js(`):k−1)

S,k−1 (`)
, t(`) = k − 1

τ
(js(`):t(`))

0:t(`) (xs(`):t(`), `), t(`) < k − 1,

Λ̄
(js(`):i)

S,i|i−1 (`) (52)

=
∫

Λ
(ji)
S,i|i−1(xi|xi−1, `)τ

(js(`):i−1)

0:i−1 (xs(`):i−1, `)dxs(`):i

Q̄
(js(`):i−1)

S,i−1 (`) (53)

=
∫
QS,t(`)(xi−1, `)τ

(js(`):i−1)

0:i−1 (xs(`):i−1, `)dxs(`):i−1

Note that the weight (49) can be written explicitly as

w
(γ0:k)
0:k =

k∏
i=1

1Γi(γi)1F(Bi]L(γi−1))(L(γi))[η
(γ0:i(·))
i|i−1 (·)]Bi]L(γi−1).

Also, instead of using τ
(js(`):i−1)

0:i−1 (·, `) in (52) and (53), we
only need its marginal

τ
(js(`):i−1)

i−1 (xi−1, `) =
∫
τ

(js(`):i−1)

0:i−1 (xs(`):i−1, `)dxs(`):i−2.

Computing τ
(js(`):k)

0:k (·, `) and η
(js(`):k)

k|k−1 (`) is discussed in Ap-
pendix VII-F.

The multi-scan GLMB (48) is completely parameterized
by the components (w(γ0:k)

0:k , τ (γ0:k)
0:k ), and we seek (without

exhaustive enumeration) components with significant weights.
This is a multi-dimensional assignment problem, which is NP-
hard for more than two scans [52]. Our solution is based on
sampling γ0:k’s from some discrete probability distribution π
such that components with high weights are more likely to be
chosen than those with low weights. A natural choice is to set

π(j)(γj |γ0:j−1) ∝ (54)

1Γj(γj)1F(Bj]L(γj−1))(L(γj))[η
(γ0:j(·))
j|j−1 (·)]Bj]L(γj−1)

with L(γj) = ∅, so that

π(γ1:k) =

k∏
j=1

π(j)(γj |γ0:j−1) ∝ w(γ0:k)
0:k (55)

Metropolis-Hasting MCMC (MH-MCMC) is a popular
technique for sampling from complex distributions, and has
been applied to solve the data association problem for multi-
object tracking in [53]. We seek to minimize the L1 error
between an approximate multi-scan GLMB and the multi-
object posterior, by sampling GLMB components from (55).
MH-MCMC could take some time for a new sample to be

accepted, depending on the proposal, not to mention the time
it takes for the chain to converge. Designing a proposal to
have high acceptance probability is still an open area of re-
search. Furthermore, the actual distribution of the samples and
the convergence time depend on the starting value. Usually,
an MCMC simulation is divided into two parts: the pre-
convergence samples, known as burn-ins, are discarded; and
the post-convergence samples are used for inference [54]. The
key issue is that there are no bounds on the burn-in time
nor reliable techniques for determining when convergence has
occurred; see e.g. [54] and references therein.

The Gibbs sampler is a computationally efficient MCMC
algorithm, in which proposed samples are always accepted
[55], [56]. Further, for approximating multi-scan GLMB, the
distribution of the samples is not relevant. Regardless of
their distribution, all distinct samples will reduce the L1

approximation error. However, Gibbs sampling requires the
conditionals of (55), to be easily computed and sampled.

In the following, we present two techniques for sampling
from (55). The first, detailed in subsection IV-B, is based on
sampling from the factors (54), i.e., γj ∼ π(j)(·|γ0:j−1), for
j = 1 : k. The second, detailed in subsection IV-C, is a full
Gibbs sampler with (55) as the stationary distribution.

B. Sampling from the Factors

Sampling from (54) using the Gibbs sampler [55], [56]
involves constructing a Markov chain where a new state γ′j
is generated from state γj by sampling the values of γ′j(`n),
`n ∈ {`1:|Lj |} , Lj from the distribution π(j)

n given by

π(j)
n (α|γ′j(`1:n−1), γj(`n+1:|Lj |), γ0:j−1)

∝ π(j)(γ′j(`1:n−1), α, γj(`n+1:|Lj |)|γ0:j−1)

where
γj(`u:v) , [γj(`u), ..., γj(`v)],

γj(`n̄) , [γj(`1:n−1), γj(`n+1:|Lj |)].

For a valid γj , i.e. π(j)(γj |γ0:j−1) > 0, it is necessary that
1F(Bj]L(γj−1))(L(γj)) = 1, i.e. L(γj) ⊆ Bj ] L(γj−1). This
amounts to disregarding any γj that takes on a non-negative
value outside Bj ]L(γj−1), and consider only those that take
on -1 everywhere outside of Bj] L(γj−1). In this case

π(j)
n (γj(`n)|γj(`n̄), γ0:j−1) ∝ 1Γj (γj)η

(γ0:j(`n))

j|j−1 (`n)

for `n ∈ {`1:|Bj]L(γj−1)|} , Bj ] L(γj−1). Further, applying
Proposition 3 of [19] gives:

π(j)
n (γj(`n)|γj(`n̄),γ0:j−1) ∝ η(γ0:j(`n))

j|j−1 (`n)M (γj(`n̄))(γj(`n))

where
M (S)(α) =

{
1, α ≤ 0
(1− 1S(α)), α > 0

.

Hence, to generate γ′j from a valid γj , we set γ′j(`) = −1
for all ` ∈ Lj − Bj ] L(γj−1) and sample γ′j(`n) for `n ∈
{`1:|Bj]L(γj−1)|} from

π(j)
n (α|γ′j(`1:n−1), γj(`n+1:|Lj |), γ0:j−1)

∝ η
(γ0:j−1(`n),α)

j|j−1 (`n)M (γ′j(`1:n−1),γj(`n+1:|Lj |))(α). (56)
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Note that in implementation, we only need the values of γj
on Bj]L(γj−1). The pseudo code for sampling from (55) by
sampling from the factors is given in Algorithm 1.

Algorithm 1a: SampleJointFactors
• input: R (no. samples)
• output: G0:k

initialize G0 := (γ0, w0, τ0);
for j = 1 : k

[G
(r)
0:j ]

R
r=1 := SampleFactors(G0:j−1, R); G0:j := G

(R)
0:j ;

end

Algorithm 1b: SampleFactors
• input: G0:k−1 = (γ0:k−1, w0:k−1, τ0:k−1);R (no. samples)
• output: [G

(r)
0:k]Rr=1 = [(γ

(r)
0:k, w

(r)
0:k, τ

(r)
0:k)]Rr=1

Pk := |Bk ] L(γk−1)|;Mk := |Zk|; c := [−1:Mk];
γk := zeros(Pk, 1); (or any valid state)
for r = 1 : R
γ′k := [ ];
for n = 1 : Pk

for α = −1 : Mk

κ(α) :=π
(k)
n (α|γ′k(`1:n−1),γk(`n+1:Pk),γ0:k−1); via (56)

end
γ′k(`n) ∼ Categorical(c,κ); γ′k := [γ′k, γ

′
k(`n)];

end
γk := γ′k; γ0:k := [γ0:k−1,γk];
compute w0:k, τ0:k from γ0:k via (49), (51);

G
(r)
0:k := (γ0:k, w0:k, τ0:k);

end

This approach ensures that the sample γ1:k is a valid
association history. However, to guarantee that γ1:k is a sample
from (55), it is necessary to run each Gibbs sampler for
sufficiently long at each time j ∈ {1 : k}, to ensure that γj
is a sample from π(j)(·|γ0:j−1). Nonetheless, sampling from
the factors can be used to generate a good starting point for
the full Gibbs sampler.

C. Gibbs Sampling

Sampling from (55) using the Gibbs sampler [55], [56]
involves constructing a Markov chain where a new state γ′1:k

is generated from state γ1:k by sampling the values of γ′j(`n),
j = 1 : k, `n ∈ {`1, ..., `|Lj |} according to the conditional
distribution πj,n defined by

πj,n(α|

past︷ ︸︸ ︷
γ′0:j−1,

current (processed)︷ ︸︸ ︷
γ′j(`1:n−1) ,

current (unprocessed)︷ ︸︸ ︷
γj(`n+1:|Lj |) ,

future︷ ︸︸ ︷
γj+1:k)

∝ π(γ′0:j−1, γ
′
j(`1:n−1), α, γj(`n+1:|Lj |), γj+1:k).

We also use the notation γ j̄ , (γ0:j−1, γj+1:k) to denote the
past and future association maps.

Observe from (54) and (55) that for a valid γ1:k, i.e.
π(γ1:k) > 0, it is necessary that 1Γi(γi) = 1 (i.e. γi is
positive 1-1), and 1F(Bi]L(γi−1))(L(γi)) = 1 (i.e. dead labels
at i − 1 cannot be live at i, or equivalently, a live label at
i cannot be dead at i − 1) for i = 1 : k. Thus, in addition

to being positive 1-1, consecutive elements of a valid γ1:k

must be such that dead labels remains dead at the next time.
Closed form expressions for the conditionals are given in the
following Proposition (see Appendix VII-G for proof).

Proposition 10. Suppose γj :Lj → {−1:|Zj |}, j ∈ {1:k}, is
an element of a valid association history γ1:k, and let

η
(γj̄)

j,n (α) ,
t(`n)∏
i=j

η
(γ0:j−1(`n),α,γj+1:i(`n))

i|i−1 (`n)

M
(S)
β (α) ,

δβ [α], α < 0
1, α = 0
(1− 1S(α)), α > 0

Then, for `n ∈ {`1:|Bj]L(γj−1)|} , Bj]L(γj−1),

πj,n(γj(`n)|γj(`n̄), γ j̄)

∝ η
(γj̄)

j,n (γj(`n))M
(γj(`n̄))

γmin{j+1,k}(`n)(γj(`n)) (57)

and for `n ∈ {`|Bj]L(γj−1)|+1:|Lj |} , Lj − Bj]L(γj−1)

πj,n(γj(`n)|γj(`n̄),γ j̄)

= δ−1[γj(`n)]δγmin{j+1,k}(`n)[γj(`n)]. (58)

To generate γ′j , from a valid γ1:k, we sample γ′j(`n), `n ∈
{`1:|Bj]L(γj−1)|} from

πj,n(α|γ′0:j−, γ
′
j(`1:n−1), γj(`n+1:|Lj |), γj+1:k) (59)

∝ η
(γ′0:j−1,γj+1:k)

j,n (α)M
(γ′j(`1:n−1),γj(`n+1:|Lj |))

γmin{j+1,k}(`n) (α)

and set γ′j(`n) = −1 for the remaining `n. This last step is
omitted in actual implementation and it is understood that γ′j
is negative outside of {`1:|Bj]L(γj−1)|}. The Gibbs sampler
with stationary distribution (55) is given in Algorithm 2.

Algorithm 2: MultiScanGibbs
• input: G0:k = (γ0:k, w0:k, τ0:k);T (no. samples)
• output: [G

(t)
0:k]Tt=1

for t = 1 : T
for j = 1 : k
Pj := |Bj]L(γj−1)|;Mj := |Zj |; c := [−1:Mj ]; γ

′
j := [ ];

for n = 1 : Pj
for α = −1 : Mj

κ(α) :=πj,n(α|γ′0:j−1,γ
′
j(`1:n−1), γj(`n+1:Pj ),γj+1:k);

via (57)
end
γ′j( ǹ) ∼ Categorical(c,κ); γ′j := [γ′j ; γ

′
j( ǹ)];

end
γj := γ′j ; γ0:j := [γ0:j−1,γj ];
compute w0:k, τ0:k from γ0:j via (49), (51);
end
G

(t)
0:k := (γ0:k, w0:k, τ0:k);

end

Starting with a valid association history, it follows from
Proposition 10 that all iterates of the Gibbs sampler (Al-
gorithm 2) are also valid association histories. The value
η

(γ′0:j−1,γj+1:k)

j,n (α) can be interpreted as the unnormalized



PREPRINT: IEEE TRANS. SIGNAL PROCESSING, VOL. 67, NO. 19, PP. 4948-4963, OCT. 2019 9

probability that the trajectory with label `n has the sequence
of measurements with indices γ′0:j−1(`n), α, γj+1:k(`n). The

value M
(γ′j(`1:n−1),γj(`n+1:|Lj |))

γmin{j+1,k}(`n) (α) is simply a binary mask
which ensures that if `n is alive at the next time, j + 1, then
it cannot be dead at the current time j, or that if `n is alive
at the current time j, then it cannot take on a measurement
assigned to other labels at the current time. The product of
these values is thus the unnormalized conditional probability
that the trajectory with label `n has measurement index α at
the current time, given γ′0:j−1, γ

′
j(`1:n−1), γj(`n+1:|Lj |), γj+1:k,

i.e. all of the other labels and associations from all other times.
Notice (58) implies that if label `n is dead at the previous time
j − 1, then it must remain dead for all subsequent times.

Let Pj = |Bj] L(γj−1)| and Mj = |Zj | then Algorithm 2
has complexity O(T ·

∑k
j=1 P

2
jMj), where T is the number

of iterations of the Markov chain. Thus if P̄ = maxj∈{1:k} Pj
and M̄ = maxj∈{1:k}Mj then indicatively Algorithm 2 has
complexity O(kT P̄ 2M̄).

Remark: Algorithm 2 can also be implemented as a block
Gibbs sampler. Instead of sampling every element of γ′j from
the conditionals (59), we draw the entire γ′j from

πj(γ
′
j |γ′0:j−1, γj+1:k) ∝ π(γ′0:j−1, γ

′
j , γj+1:k).

Proposition 11. Starting from any valid initial state, the Gibbs
sampler defined by the conditionals (57) converges to the
target distribution (55) at an exponential rate. More concisely,
let πj denote the jth power of the transition kernel, then

max
γ1:k,γ

′
1:k∈Γk

(|πj(γ′1:k|γ1:k)− π(γ′1:k)|) ≤ (1− 2β)b
j
hc,

where, h = k + 1, β , minγ1:k,γ
′
1:k∈Γk π

h(γ′1:k|γ1:k) > 0 is
the least likely h-step transition probability.

The proof follows along the same lines as Proposition 4
of [19], with the 2-step transition probability replaced by the
(k + 1)-step transition probability. Instead of going from one
arbitrary state of the chain to another via the all-zeros state in
2 steps as in [19], we go to the all-negative state (consisting
of all -1) in k steps or less, and from this state to the other
state in one additional step.

For batch smoothing, Algorithm 1b can be used to initialize
the chain and Algorithm 2 can be used to generate samples
from (55). The pseudocode for batch smoothing is given in
Algorithm 3, where we enumerate the sum over γ0:k in (48)

as a sum over {γ(h)
0:k}Hh=1 and use the shorthand w(h)

0:k = w
(γ

(h)
0:k)

0:k ,

τ
(h)
0:k(·) = τ

(γ
(h)
0:k◦L(·))

0:k (·). Recall that one of the proposed
estimators is based on the most significant γ1:k. In this case,
the multi-scan Gibbs sampler can be used in a simulated
annealing setting to find the best γ1:k. The complexity of
Algorithm 3 is consequently O(kT P̄ 2M̄).

To perform smoothing-while-filtering which propagates (48)
recursively, Algorithm 1a can be used to propose a new
ensemble of γk on-the-fly, and Algorithm 2 can be used to
generate an ensemble of significant γ0:k. Algorithm 4 presents
the steps of a possible implementation of a smoothing-while-
filtering iteration. Due the parallelizability of the for loops, the
time complexity of Algorithm 4 is also O(kT P̄ 2M̄).

Algorithm 3: Batch
• input: R;T
• output: [G

(h)
0:k ]Hh=1

G0:k := SampleJointFactors(R);

[G
(t)
0:k]T̃t=1 := Unique(MultiScanGibbs(G0:k, T ));

keep H best [G
(h)
0:k ]Hh=1;

Algorithm 4: Smoothing-while-Filtering
• input: [G

(h)
0:k−1]

Hk−1

h=1 ; [T (h)]
Hk−1

h=1 ;T

• output: [G
(h)
0:k ]Hkh=1

for h = 1 : Hk−1

[G
(h,t)
0:k ]T̃

(h)

t=1 := Unique(SampleFactors(G
(h)
0:k−1, T

(h)));
end

keep H̄k best [G
(h)
0:k ]H̄kh=1;

for h = 1 : H̄k

[G
(h,t)
0:k ]Tt=1 :=MultiScanGibbs(G

(h)
0:k , T );

end

[G
(h)
0:k ]H̃kh=1 := Unique([G

(h,t)
0:k ]

(H̄k,T )
h,t=(1,1));

keep Hk best [G
(h)
0:k ]Hkh=1;

normalize weights [w
(h)
0:k ]Hkh=1;

V. NUMERICAL EXPERIMENTS

A. Smoothing vs Filtering

This subsection demonstrates the performance of the multi-
scan GLMB smoother proposed in Section IV. For bench-
marking against GLMB filtering, we adopt the scenario in
[19] Section IV(A)2, a summary of which is given here. The
duration is 100 time steps over which the number of objects
is unknown and varies with time due to births and deaths.
Births occur around times 1, 10, 60, 70 (with respectively 3, 4,
2, 2 births) and multiple deaths occur around times 30, 50 (2
deaths at both times). The 3 objects born at the beginning of
the scenario cross at the origin around time 20, and another
two pairs of objects cross, respectively on the left and right
of the horizontal axis around time 40. A peak number of 9
objects occur simultaneously towards the end of the scenario.

Individual object dynamics and observations are linear
Gaussian. The kinematic state of each object is a 4D state
vector [px, vx, py, vy] of 2D position and velocity, which
follows a constant velocity model with a sampling period
of 1s and process noise standard deviation σν = 5m/s2.
The survival probability PS for each object is 0.99. Ob-
jects are born according to an LMB model with parameters
{(rB,k(`i), pB,k(`i))}3i=1, where `i = (k, i), rB,k(`i) = 0.04,
and pB(x, `i) = N (x;m

(i)
B , PB) with

m
(1)
B = [0, 0, 100, 0]T , m

(2)
B = [−100, 0,−100, 0]T ,

m
(3)
B = [100, 0,−100, 0]T , PB = diag([10, 10, 10, 10]T )2.

2Errata: the conference version [44] used the scenario from [57] and not
the scenario from [19] as originally quoted.
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Observations are 2D position vectors [zx, zy] on the region
[−1000, 1000]m× [−1000, 1000]m with Gaussian noise stan-
dard deviation σε = 10m. The detection probability PD =
0.66 is considerably lower than the original value of 0.88 in
[19]. Clutter follows a Poisson model with a uniform intensity
κk(z) = 1.93×10−5 m−2 on the observation region, resulting
in an average count of 77 false alarms per scan, which is higher
than the original value of 66 in [19].

The multi-scan GLMB smoother (Algorithm 4) is run with a
maximum H = 1000 components and for T = 100 iterations
of the Markov chain, which is initialized by sampling from the
factors (Algorithm 1a). To improve efficiency, we employed a
block Gibbs sampling strategy. The single-scan GLMB filter
[19] is also run with a maximum of 1000 components.

Figure 2 plots the GLMB smoother estimate and the true
tracks in the x-y plane. Observe that the smoother initiates
and terminates all pertinent tracks. By design of the smoother,
there are no fragmented tracks. The estimates of the individual
states and labels are consistent. In the presence of low detec-
tion probability and high clutter rate, there is however some
increase in the positional errors during object crossings. The
corresponding output for the GLMB filter is shown in Figure 3.
In comparison there is a significant incidence of false, dropped
and broken tracks, and even where a track has been declared,
the positional errors are noticeably larger.
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Ground Truths
Trajectory Estimates

Fig. 2. Ground truths and estimated tracks from multi-scan GLMB smoothing.
Starting and stopping positions are indicated with © and 4 respectively.

At each time, the smoother updates the entire multi-object
history. Thus, for each multi-object trajectory estimate, it is
important to consider the tracking errors at every instant of this
history. Figure 4 plots the OSPA [58] and OSPA(2) [59] errors
of the smoother’s (and filter’s) final estimate against time. 100
Monte Carlo trials are used with OSPA parameters c = 100m,
and p = 1. The OSPA(2) error at time k is computed over
a 10-scan window ending at time k and assesses tracking
performance over this 10-scan window (see also [59], [60]).
Due to the smoother’s ability to correct earlier estimates, its
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Trajectory Estimates

Fig. 3. Ground truths and estimated tracks for single-scan GLMB filtering.
Starting and stopping positions are indicated with © and 4 respectively.

error is significantly below the filtering error for the entire
duration of the estimate, albeit at higher computational cost.
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Fig. 4. OSPA and OSPA(2) error curves for the final estimates from the
GLMB filter and multi-scan smoother over 100 Monte Carlo runs.

Remark: The latest technique for large scale multi-
dimensional problems can handle up to 5 dimensions with
20 measurements per dimension, which translates to a linear
program with 3.2 million binary variables [52]. Our 100-
scan smoothing window example involves 100 dimensions
with about 80 measurements per dimension, demonstrates
the scalability of the proposed multi-dimensional assignment
solution. In most multi-object tracking applications, such large
smoothing windows are not needed. The longer the smoothing
window, the more accurate the estimates, but the longer the
computation time. A good trade-off for a multi-object a tracker
is to use a moving smoothing window with shorter length.
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B. Posterior Statistics Demonstration

This subsection considers a severe scenario to stress-test
the multi-scan GLMB model and illustrate its capability to
provide useful information even when tracking results are not
reliable. The setting is a cell-biology application, where the
user is interested in cell lifetime, birth rate, death rate, and
cell migration patterns. The scenario duration is 1000 mins
with data arriving at 10-min intervals. To simulate variations
in cell lifetimes: at the 1st min 4 cells appear and live for 100
mins; at the 200th min another 4 cells appear and live for 200
mins; at the 500th min another 4 cells appear and live for 400
mins. The cells are initiated at the centres of the 4 quadrants
of the region, with a common speed towards the origin and
terminate before reaching the origin.

The cells have survival probability of 0.95, and their states
are 4D vectors (planar position/velocity) that follow a constant
velocity model with sampling period ∆ = 10mins, and process
noise with standard deviation σν = 0.01mm/∆2. The birth
model is an LMB with parameters {(rB,k(`i), pB,k(`i))}4i=1,
where rB,k(`i) = 0.03 and pB(x, `i) = N (x;m

(i)
B , PB) with

m
(1)
B = [5, 0, 5, 0]T , m

(2)
B = [5, 0,−5, 0]T ,

m
(3)
B = [−5, 0,−5, 0]T , m

(3)
B = [−5, 0, 5, 0]T ,

and PB = diag([0.15, 0.15, 0.15, 0.15]T )2. Observations are
2D positions on the region [−10, 10]mm×[−10, 10]mm, with
additive Gaussian noise standard deviation σε = 0.3mm.
Clutter is uniform Poisson with a rate of 0.3 per scan, and
the detection probability is 0.33. In practice data with such
low detection probability will be discarded, we only use this
scenario to demonstrate the capability of the proposed model.
The multi-scan GLMB smoother is run with the same H,T
and block sampling strategy as in the previous subsection.
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Fig. 5. Posterior distributions of number and lengths of trajectories.

Figure 5 shows the posterior distributions of the number
of trajectories and cell lifetimes. Observe that the smoother
correctly estimates 12 trajectories (with negligible modes at
13, ..., and 19), and the 3 modes of cell lifetimes (100, 200, and

100 200 300 400 500 600 700 800 900 1000
Time (mins)

10

8

6

4

2

0

C
ar

d 
D

n 
of

 B
irt

hs

0

0.2

0.4

0.6

0.8

1

100 200 300 400 500 600 700 800 900 1000
Time (mins)

10

8

6

4

2

0

C
ar

d 
D

n 
of

 D
ea

th
s

0

0.2

0.4

0.6

0.8

1

Fig. 6. Posterior cardinality distributions of births and deaths at each time.

400 mins). Note that shorter lifetime estimates have larger un-
certainty. From Figure 6, showing the cardinality distributions
of births and deaths in time, note that the smoother correctly
identifies the instances of 4 births (at 1, 200, and 500 mins),
and 4 deaths (at 100, 400, and 900 mins). There is however
considerable uncertainty in the estimates of the death times
due to the high uncertainty in the data.

Figure 7 shows the smoothed unlabeled PHD (or first
moment) in the velocity space at 100, 200, 500, and 900 mins.
The first 3 plots correctly confirm the presence of 4 modes of
velocity (radially through the centre). The last plot correctly
confirms the onset of cell deaths. Even with some uncertainty
in the drift, these plots indicate overall migration of the cells
diagonally across the region.

Fig. 7. Smoothed PHD in velocity space at various times.

VI. CONCLUSIONS

By introducing a multi-scan version of the GLMB model,
we developed a multi-scan version of the GLMB filter to per-
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form multi-object smoothing. We showed that computing the
multi-scan GLMB posterior with minimal L1-error (from its
exact value) requires solving a multi-dimensional assignment
problem with very high dimensions. Further, we developed
an efficient and highly parallelizable algorithm for solving
such multi-dimensional assignment problems using Gibbs
sampling, and subsequently a novel multi-object smoothing-
while-filtering algorithm. Numerical multi-object tracking ex-
amples demonstrated that the proposed algorithm significantly
improves tracking performance as well as eliminating track
fragmentation, a problem often found in multi-object filters.
In addition, statistical characterization of variables/parameters
pertaining to the underlying objects, can provide useful infor-
mation, even for severe scenarios where multi-object trajectory
estimates are no longer meaningful.

VII. APPENDIX

A. Properties of Multi-Scan Exponentials

To present relevant properties of multi-scan exponentials,
we introduce some useful partitionings for the labels of the
multi-object state sequence Xj:k. Given a time i in {j : k}, a
label ` ∈ ∪kr=jL(Xr) is alive at i iff ` ∈ L(Xi), terminates
at t(`) < i (before i) iff ` ∈ L(Xt) − L(Xt+1), and born at
time s(`) > i (after i) iff ` ∈ L(Xs) ∩ Bs. The set of labels
in Xj:k can be partitioned into labels terminated before i, live
labels at i, and labels born after i, i.e.

k⋃
r=j

L(Xr) =
←−−−−
L(Xi) ] L(Xi) ]

−−−−→
L(Xi) (60)

where
←−−−−
L(Xi) ,

{
` ∈ ∪kr=jL(Xr) : t(`) < i

}
=

i⋃
r=j

L(Xr)− L(Xi) =
i−1⊎
t=j

(L(Xt)−L(Xt+1)) (61)

−−−−→
L(Xi) =

{
` ∈ ∪kr=jL(Xr) : s(`) > i

}
=

k⋃
r=i

L(Xr)− L(Xi) =
k⊎

s=i+1

L(Xs) ∩ Bs. (62)

When i = k,
−−−−→
L(Xk) = ∅ and the set of labels in Xj:k can

be partitioned into labels terminated before k and live labels
at k, i.e. (61) becomes⋃k

r=j L(Xr) =
←−−−−
L(Xk) ] L(Xk). (63)

In addition, if j = k − 1, then
←−−−−
L(Xk) = L(Xk−1)− L(Xk),

and using the decomposition L(Xk) = (L(Xk−1)∩L(Xk))]
(Bk ∩ L(Xk)), the set of labels in Xk−1:k can be partitioned
into labels terminated at k−1, labels survived to k, and labels
born at k, i.e. (63) becomes⋃k
r=k−1 L(Xr) = (64)
(L(Xk−1)−L(Xk))](L(Xk−1) ∩L(Xk))](Bk ∩ L(Xk)).

When i = j,
←−−−−
L(Xj) = ∅ and the set of labels in Xj:k can

be partitioned into live labels at j and labels born after j, i.e.
(62) becomes ⋃k

r=j L(Xr) = L(Xj)]
−−−−→
L(Xj). (65)

B. Proof of Lemma 1

Parts (i) and (ii) follows straight from the definition of multi-
scan exponential.

To prove (iii), noting from (60) that the set of labels
∪kr=jL(Xr) can be partitioned into those terminated before
i, alive at i, and born after i, we partition the set Xj:k of
trajectories accordingly, i.e.

Xj:k = {x(`)
s(`):t(`): ` ∈ ∪

k
r=jL(Xr)}

= {x(`)
s(`):t(`): ` ∈

←−−−−
L(Xi)} ] {x(`)

s(`):t(`): ` ∈ L(Xi)}
] {x((`)

s(`):t(`): ` ∈
−−−−→
L(Xi)}.

Hence, using (ii) gives

[h]
Xj:k = [h]

{x(`)

s(`):t(`)
:`∈
←−−−−
L(Xi)} [h]

{x(`)

s(`):t(`)
:`∈L(Xi)}

× [h]
{x(`)

s(`):t(`)
:`∈
−−−−→
L(Xi)} . (66)

and setting i to k, and i to j we have

[h]
Xj:k = [h]

{x(`)

s(`):t(`)
:`∈
←−−−−
L(Xk)}

[h]
{x(`)

s(`):k
:`∈L(Xk)}

, (67)

[h]
Xj:k = [h]

{x(`)

j:t(`)
:`∈L(Xj)} [h]

{x(`)

s(`):t(`)
:`∈
−−−−→
L(Xj)} . (68)

Using (67) and (68), we partition [g]
Xj:i and [h]

Xi:k , and then
combine them as follows

[g]
Xj:i [h]

Xi:k = [g]
{x(`)

s(`):t(`)
:`∈
←−−−−
L(Xi)} [g]

{x(`)

s(`):i
:`∈L(Xi)}

× [h]
{x(`)

i:t(`)
:`∈L(Xi)} [h]

{x(`)

s(`):t(`)
:`∈
−−−−→
L(Xi)}

= [g]
{x(`)

s(`):t(`)
:`∈
←−−−−
L(Xi)}

∏
`∈L(Xi)

g(x
(`)
s(`):i)

×
∏

`∈L(Xi)

h(x
(`)
i:t(`)) [h]

{x(`)

s(`):t(`)
:`∈
−−−−→
L(Xi)}

= [g�h]
{x(`)

s(`):t(`):`∈
←−−−
L(Xi)}[g�h]

{x(`)

s(`):t(`):`∈L(Xi)}

× [g�h]
{x(`)

s(`):t(`):`∈
−−−−→
L(Xi)}

= [g�h]
Xj:k .

C. Proof of Proposition 2 (Multi-Object Transition)

Using (64) to partition L(Xk−1)∪L(Xk) into disappearing
labels at time k− 1, surviving labels at time k, and new born
labels at time k, and noting that

{x(`)
k : ` ∈ Bk ∩ L(Xk)} ={x(`)

k : s(`) = k}
{x(`)

k−1:k : ` ∈ L(Xk−1) ∩ L(Xk)} ={x(`)
k−1:k : t(`) = k}

{x(`)
k−1 : ` ∈ L(Xk−1)− L(Xk)} ={x(`)

k−1 : t(`) = k − 1}

we have

Xk−1:k ≡{x(`)
s(`):t(`) : ` ∈ L(Xk−1) ∪ L(Xk)}

={x(`)
k−1 : t(`) = k − 1}]{x(`)

k−1:k : t(`) = k}

]{x(`)
k : s(`) = k}.

Let x(`)
k = (x

(`)
k , `) to denote the element of the multi-object

state Xk at time k, with label ` ∈ L(Xk), then the multi-object
transition density given in [16], [18] can be rewritten as
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fk|k−1(Xk|Xk−1)

= ∆(Xk)1F(Bk]L(Xk−1))(L(Xk))Q
Bk−L(Xk)
B,k

×
∏

`∈L(Xk−1)−L(Xk)

QS,k−1(x
(`)
k−1, `)

∏
`∈Bk∩L(Xk)

PB,k(`)fB,k(x
(`)
k , `)

×
∏

`∈L(Xk−1)∩L(Xk)

PS,k−1(x
(`)
k−1, `)fS,k|k−1(x

(`)
k |x

(`)
k−1, `)

= ∆(Xk)1F(Bk]L(Xk−1))(L(Xk))Q
Bk−L(Xk)
B,k

×
[
φk−1:k

]{x(`)
k−1:t(`)=k−1} [

φk−1:k

]{x(`)
k−1:k:t(`)=k}

×
[
φk−1:k

]{x(`)
k :s(`)=k}

= ∆(Xk)1F(Bk]L(Xk−1))(L(Xk))Q
Bk−L(Xk)
B,k

[
φk−1:k

]Xk−1:k

where the last step follows from (68).

D. Proof of Proposition 3

Using the δ-form we have∫
f(L(Xj:k))π(Xj:k)δXj:k

=
∫
f(L(Xj:k))

∑
ξ,Ij:k

w(ξ)(Ij:k)δj:k[L(Xj:k)][p(ξ)]Xj:kδXj:k

=
∑
ξ,Ij:k

f(Ij:k)w(ξ)(Ij:k)
∫
δj:k[L(Xj:k)][p(ξ)]Xj:kδXj:k

=
∑
ξ,Ij:k

f(Ij:k)w(ξ)(Ij:k)
∏
`∈Ij:k

∫
p(ξ)(x

(`)
s(`):t(`), `)dx

(`)
s(`):t(`) (69)

=
∑
ξ,Ij:k

f(Ij:k)w(ξ)(Ij:k),

where (69) follows from Lemma D below.
Lemma D: For a function h taking trajectories to the reals,

with h(·, `) integrable for each ` ∈ ∪ki=jIi ≡ Ij:k∫
δIj:k [L(Xj:k)][h]Xj:kδXj:k =

∏
`∈Ij:k

∫
h(x

(`)
s(`):t(`), `)dx

(`)
s(`):t(`).

Proof: For g : F(X×L)→ R and I = {i1, ..., i|I|} ⊆ L,∫
δI [L(X)]g(X)δX

=

∞∑
n=0

∑
l1:n

1

n!

∫
δI [{l1, ..., ln}]g({(l1, x1), ..., (ln, xn)})dx1:n

=
∫
g({(i1, x1), ..., (i|I|, x|I|)})dx1:|I| (70)

For g : F(X×Lj)× · · ·×F(X×Lk) → R, and It =
{it,1, ..., it,|It|} ⊆ Lt, t = j, ..., k,∫
δIj:k [L(Xj:k)]g(Xj:k)δXj

= δIj+1:k
[L(Xj+1:k)]

∫
δIj [L(Xj)]g(Xj ,Xj+1:k)δXj

= δIj+1:k
[L(Xj+1:k)]

×
∫
g({(ij,1, xj,1), ..., (ij,|Ij |, xj,|Ij |)},Xj+1:k)dxj,1:|Ij |

where the last line follows from (70). Further, iterating for
j + 1, ..., k∫
δIj:k [L(Xj:k)]g(Xj:k)δXj:k

=
∫
...
∫
g({(ij,1, xj,1), ..., (ij,Nj , xj,|Ij |)}, ...,

{(ik,1, xk,1), ..., (ik,Nk , xk,|Ik|)})dxj,1:|Ij | · · · dxk,1:|Ik|

Setting g(Xj:k) = [h]Xj:k yields∫
δIj:k [L(Xj:k)][h]Xj:kδXj:k

=
∫
δIj:k [L(Xj:k)]

∏
`∈Ij:k

h(x
(`)
s(`):t(`))δXj:k

=
∫
...
∫ ∏
`∈Ij:k

h(x
(`)
s(`):t(`))dxj,1:|Ij | · · · dxk,1:|Ik|

=
∫
...
∫ ∏
`∈Ij:k

h(x
(`)
s(`):t(`), `)dxj,1· · · dxj,|Ij|· · · dxk,1· · · dxk,|Ik|

=
∏
`∈Ij:k

∫
h(x

(`)
s(`):t(`), `)dx

(`)
s(`):t(`)

where the last step follows from regrouping
dxj,1 · · · dxj,|Ij | · · · dxk,1 · · · dxk,|Ik| to

∏
`∈Ij:k dx

(`)
s(`):t(`).

E. Proof of Proposition 8 (Multi-Scan GLMB Recursion)

Since π0:k−1(X0:k−1) is the multi-scan GLMB (36) with
j = 0, substituting it into the posterior recursion (6), gives the
multi-scan GLMB (38)-(41) with j = 0, i.e.

π0:k(X0:k)

∝ gk(Zk|Xk)fk|k−1(Xk|Xk−1)π0:k−1(X0:k−1)

= gk(Zk|X0:k)
(
fk|k−1(Xk|Xk−1)π0:k−1(X0:k−1)

)
∝ ∆(X0:k)

∑
ξ∈Ξ

∑
θk∈Θk

w
(ξ,θk)
0:k (L(X0:k))[p

(ξ,θk)
0:k ]X0:k .

To evaluate p(ξ,θk)
0:k (·, `) as per (39), note from (36) that

p
(ξ)
0:k(x

(`)
s(`):t(`), `)

= (p
(ξ)
0:k−1 � φk−1:k)(x

(`)
s(`):t(`), `)

=


φk−1:k(x

(`)
s(`):t(`), `), s(`)>k −1

p
(ξ)
0:k−1(x

(`)
s(`):k−1, `)φk−1:k(x

(`)
k−1:t(`), `), s(`)≤k −1≤ t(`)

p
(ξ)
0:k−1(x

(`)
s(`):t(`), `), t(`)<k −1

=



PB,k(`)fB,k(x
(`)
k , `), s(`)= k

p
(ξ)
0:k−1(x

(`)
s(`):k−1, `)PS,k−1(x

(`)
k−1, `)

×fS,k|k−1(x
(`)
k |x

(`)
k−1, `),

s(`)<t(`)=k

p
(ξ)
0:k−1(x

(`)
s(`):k−1, `)QS,k−1(x

(`)
k−1, `), s(`)≤k −1= t(`)

p
(ξ)
0:k−1(x

(`)
s(`):t(`), `), t(`)<k −1

Moreover, multiplying by ψ(θk(`))
0:k,Zk

(x
(`)
s(`):t(`), `),

p
(ξ)
0:k(x

(`)
s(`):t(`), `)ψ

(θk(`))
0:k,Zk

(x
(`)
s(`):t(`), `) (71)

=


Λ

(θk(`))
B,k (x

(`)
k , `), s(`)=k

p
(ξ)
0:k−1(x

(`)
s(`):k−1,`)Λ

(θk(`))
S,k|k−1(x

(`)
k |x

(`)
k−1,`), s(`)<t(`)= k

p
(ξ)
0:k−1(x

(`)
s(`):k−1, `)QS,k−1(x

(`)
k−1, `), s(`)≤k −1= t(`)

p
(ξ)
0:k−1(x

(`)
s(`):t(`), `), t(`)<k −1

and integrating we have

ψ̄
(ξ,θk)
0:k,Zk

(`) =


Λ̄

(θk(`))
B,k (`), s(`) = k

Λ̄
(ξ,θk(`))
S,k|k−1 (`), s(`) < t(`) = k

Q̄
(ξ)
S,k−1(`), s(`) ≤ k − 1 = t(`)

1, t(`) < k − 1

(72)
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Note that in the last step we used∫
Λ

(θk(`))
S,k (xk, `|xk−1)p

(ξ)
0:k−1(xs(`):k−1, `)dxs(`):k

=
∫

Λ
(θk(`))
S,k (xk, `|xk−1)p

(ξ)
k−1(xk−1, `)dxk−1:k = Λ̄

(ξ,θk)
S,k, (`)∫

QS,k−1(xk−1, `)p
(ξ)
0:k−1(xs(`):k−1, `)dxs(`):k−1

=
∫
QS,k−1(xk−1, `)p

(ξ)
k−1(xk−1, `)dxk−1 = Q̄

(ξ)
S,k−1(`)

Hence, dividing (71) by (72) according to (39) gives (46).
Using the following equivalences: s(`) = k iff ` ∈ D(θk)∩

Bk; s(`) < t(`) = k iff ` ∈ D(θk)− Bk; s(`) ≤ k − 1 = t(`)
iff ` ∈ Ik−1−D(θk), we have[
ψ̄

(ξ,θk)
0:k,Zk

]I0:k

Q
Bk−D(θk)
B,k

=
[
Λ̄

(θk(·))
B,k (·)

]D(θk)∩Bk [
Λ̄

(ξ,θk(·))
S,k|k−1 (·)

]D(θk)−Bk

×
[
Q̄

(ξ)
S,k−1(·)

]Ik−1−D(θk)

Q
Bk−D(θk)
B,k

=
[
ω

(ξ,θk)
k|k−1

]Bk]Ik−1

(73)

since D(θk)∩Bk, D(θk)−Bk, Ik−1−D(θk), and Bk−D(θk)
form a partition of Bk ] Ik−1.

Noting that for any θk ∈ Θk, 1Θk(Ik)(θk) = δD(θk)[Ik], and
substituting (36), (73) into definition (41) we have

w
(ξ,θk)
0:k (I0:k) = 1F(Bk]Ik−1)(D(θk))

[
ω

(ξ,θk)
k|k−1

]Bk]Ik−1

× w(ξ)
0:k−1(I0:k−1)δD(θk)[Ik]

= ω
(ξ,θk)
0:k (I0:k−1)δD(θk)[Ik].

F. Computing Multi-Scan GLMB Parameters

Under a linear Gaussian multi-object model:

ψ
(j)
k,{z1:m}(x, `) =


P

(`)
D,kN (zj ;Hkx,Rk)

κk(zj)
, if j > 0

Q
(`)
D,k if j = 0

PS,k−1(ς, `) = P
(`)
S,k−1, QS,k−1(ς, `) = Q

(`)
S,k−1

fS.k|k−1(x|ς, `) = N (x;Fk|k−1ς, Qk)

PB,k(`) = P
(`)
B,k, QB,k(`) = Q

(`)
B,k

fB,k(x, `) = N (x;m
(`)
B,k, Q

(`)
B,k)

where N (·;µ,Σ) denotes a Gaussian density with mean µ and
covariance Σ, Fk|k−1 and Hk are the single-object transition
and measurement matrices, Qk and Rk are the process and
measurement noise covariances, m(`)

B,k and Q(`)
B,k are the mean

and covariance of any new state with label `. It follows from
(51) that the densities τ

(js(`):k)

0:k (·, `) are Gaussians. Further, the
(canonical) multi-scan GLMB parameters, τ

(js(`):k)

0:k (·, `) and
η

(js(`):k)

k|k−1 (`) (required for the Gibbs sampler) can be computed
recursively using the following standard results on joint and
conditional Gaussians

N (z;Hx,R)N (x;m,P )

= N
(

[x; z] , µ̂(H,m), Σ̂(H,R, P )
)

= N (x;µ(z,H,R,m, P ),Σ(H,R, P )) q(z;H,R,m,P )

where

µ̂(H,m) ,

[
m
Hm

]
,

Σ̂(H,R, P ) ,

[
P PHT

HP R+HPHT

]
,

µ(z,H,R,m, P ) , m+ PHT (R+HPHT )−1(z −Hm),

Σ(H,R, P ) , P − PHT (R+HPHT )−1HP,

q(z;H,R,m,P ) , N
(
z;Hm,R+HPHT

)
.

Let d denotes the dimension of the single-object state space,
and Πj:k , [0d,(k−j)d, Id,d], then these identities become:

N (xk;Fxk−1, Q)N (xj:k−1;mj:k−1, Pj:k−1)

= N (xk;FΠj:k−1xj:k−1, Q)N (xj:k−1;mj:k−1, Pj:k−1)

= N (xj:k; m̂j:k, P̂j:k)

m̂j:k = µ̂(FΠj:k−1,mj:k−1)

P̂j:k = Σ̂(FΠj:k−1, Q, Pj:k−1),

N (z;Hxk, R)N (xj:k; m̂j:k, P̂j:k)

= N (z;HΠj:kxj:k, R)N (xj:k; m̂j:k, P̂j:k)

= N (xj:k;mj:k, Pj:k) q(z;HΠj:k, R, m̂j:k, P̂j:k)

mj:k = µ(z,HΠj:k, R, m̂j:k, P̂j:k)

Pj:k = Σ(HΠj:k, R, P̂j:k).

Hence, for the multi-scan GLMB parameters we have:

τ
(js(`):k)

0:k (xs(`):t(`), `)

= N (xs(`):t(`);m
(js(`):t(`))

0:t(`) (`), P
(js(`):t(`))

0:t(`) (`))

η
(js(`):k)

k|k−1 (`) =


P

(`)
B,kq

(jk)
k (zjk , `), `∈Bk, jk≥ 0

P
(`)
S,k−1q

(js(`):k)

k (zjk , `), `∈Lk−1, jk≥ 0

Q
(`)
B,k, `∈Bk, jk< 0

Q
(`)
S,k−1, `∈Lk−1, jk< 0

where

m
(js(`):k)

0:k (`) ={
m̂

(js(`):k)

0:k (`), jk = 0

µ(zjk ,HkΠ
(`)
k ,Rk,m̂

(js(`):k)

0:k (`),P̂
(js(`):k)

0:k (`)), jk > 0

P
(js(`):k)

0:k (`) =

{
P̂

(js(`):k)

0:k (`), jk = 0

Σ(HkΠ
(`)
k , Rk, P̂

(js(`):k)

0:k (`)), jk > 0

m̂
(js(`):k)

0:k (`) =

{
m

(`)
B,k, s(`) = k

µ̂(Fk|k−1Π
(`)
k−1,m

(js(`):k−1)

0:k−1 (`)), s(`) < k

P̂
(js(`):k)

0:k (`) =

{
Q

(`)
B,k, s(`) = k

Σ̂(Fk|k−1Π
(`)
k−1,Qk,P

(js(`):k−1)

0:k−1 (`)), s(`) < k

Π
(`)
j =

[
0d,(j−s(`))d, Id,d

]
q

(js(`):k)

k (zjk ,`) =

Q
(`)
D,k, jk = 0

P
(`)
D,kq(zjk;Hk,Rk,m̂

(js(`):k)

k (`),P̂
(js(`):k)

k (`))

κk(zjk ) , jk > 0

m̂
(js(`):k)

k (`) = Π
(`)
k m̂

((js(`):k)

0:k (`),

P̂
(js(`):k)

k (`) = Π
(`)
k P̂

((js(`):k)

0:k (`)(Π
(`)
k )T
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For non-linear non-Gaussian models particle smoothing
methods can be used to approximate τ

(js(`):k)

0:k (·, `) and sub-
sequently η

(js(`):k)

k|k−1 (`) by replacing integrals with sums.

G. Proof of Proposition 10

Using (55) and noting that we are only interested in the
functional dependence of πj,n(γj(`n)|γj(`n̄), γ j̄) on γj(`n),
we write

πj,n(γj(`n)|γj(`n̄), γ j̄)

∝ π(γ0:j−1, γj(`n), γj(`n̄), γj+1:k)

=

j−1∏
i=1

π(i)(γi|γ0:i−1)

k∏
i=j

π(i)(γi|γ0:i−1)

∝
k∏
i=j

π(i)(γi|γ0:i−1)

since γj(`n) is not contained in any of the factors
π(i)(γi|γ0:i−1), i ∈ {1:j − 1}. Substituting (54) for the
remaining factors gives

πj,n(γj(`n)|γj(`n̄), γ j̄)

∝
k∏
i=j

1Γi(γi)1F(Bi]L(γi−1))(L(γi))

k∏
i=j

∏
`∈Bi]L(γi−1)

η
(γ0:i(`))
i|i−1 (`)

=

k∏
i=j

1Γi(γi)1F(Bi]L(γi−1))(L(γi))

t(`n)∏
i=j

η
(γ0:i(`n))
i|i−1 (`n)

×

 k∏
i=j

∏
`∈Bi]L(γi−1)−{`n}

η
(γ0:i(`))
i|i−1 (`)


∝ 1F(Bj]L(γj−1))(L(γj))1F(Bj+1]L(γj))

(L(γj+1))1Γj (γj)

× η(γj̄)

j,n (γj(`n))

where in the last step we aggregated all terms not involving
γj(`n) into the normalizing constant.

The validity of γ1:k implies both 1F(Bj]L(γj−1))(L(γj))
and 1F(Bj+1]L(γj))

(L(γj+1)) equal to 1, which means that
the following conditions hold

∀` ∈ Lj − Bj ] L(γj−1), γj(`) = −1, (74)

∀` ∈ Lj , γj(`) ≥ 0 or γmin{j+1,k}(`) = −1. (75)

Violation of (74) means 1F(Bj]L(γj−1))(L(γj)) = 0, because
if there exist an `∈Lj−Bj]L(γj−1) such that γj(`) ≥ 0, then
L(γj) is not in Bj]L(γj−1), i.e. 1F(Bj]L(γj−1))(L(γj)) = 0.

Violation of (75) means 1F(Bj+1]L(γj))
(L(γj+1)) = 0,

because (except for j = k) if there exist an ` ∈ Lj such that
γj(`) < 0 and γj+1(`) ≥ 0, then ` is not in L(γj) and hence
L(γj+1) (which contains `) is not contained in Bj+1]L(γj),
i.e. 1F(Bj+1]L(γj))

(L(γj+1)) = 0.
We consider πj,n(γj(`n)|γj(`n̄), γ j̄) for `n∈ {`1:|Bj]L(γj−1)|}

first, and subsequently for `n ∈ {`|Bj]L(γj−1)|+1:|Lj |}, if this
set is non-empty.

For any `n ∈ {`1:|Bj]L(γj−1)|}, (74) holds, and we have
either (i) γj(`n) ≥ 0 or γmin{j+1,k}(`n) = −1; or (ii) its
(logical) complement, i.e. γj(`n) < 0 and γmin{j+1,k}(`n) ≥ 0.

For case (i), since (75) also holds,

πj,n(γj(`n)|γj(`n̄), γ j̄)

∝ 1Γj (γj)η
(γj̄)

j,n (γj(`n))

∝

{
η

(γj̄)

j,n (γj(`n)), γj(`n) ≤ 0

η
(γj̄)

j,n (γj(`n))(1− 1γj(`n̄)(γj(`n))), γj(`n) > 0
,

where the last step invokes Proposition 3 of [19].
Case (ii) violates (75), hence 1F(Bj+1]L(γj))

(L(γj+1)) = 0
and consequently π(γj(`n)|γj(`n̄), γ j̄) = 0.

Decomposing γj(`n) ≤ 0 into two cases γj(`n) = 0 and
γj(`n) < 0, and combining the latter with case (ii) we have

πj,n(γj(`n)|γj(`n̄), γ j̄)

∝


η

(γj̄)

j,n (γj(`n))δγmin{j+1,k}(`n)[γj(`n)], γj(`n) < 0

η
(γj̄)

j,n (γj(`n)), γj(`n) = 0

η
(γj̄)

j,n (γj(`n))(1− 1γj(`n̄)(γj(`n))), γj(`n) > 0

,

and hence (57).
For any `n ∈ {`|Bj]L(γj−1)|+1:|Lj |}, any values other

than γj(`n) = −1 and γmin{j+1,k}(`n) = −1 would
violate (74) or (75). Either of these violations imply
1F(Bj+1]L(γj))

(L(γj+1)) = 0. Hence we have (58).
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