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Abstract

We propose a 3D multi-object tracking (MOT) solution using only 2D detections from monocular cameras,

which automatically initiates/terminates tracks as well as resolves track appearance-reappearance and oc-

clusions. Moreover, this approach does not require detector retraining when cameras are reconfigured but

only the camera matrices of reconfigured cameras need to be updated. Our approach is based on a Bayesian

multi-object formulation that integrates track initiation/termination, re-identification, occlusion handling,

and data association into a single Bayes filtering recursion. However, the exact filter that utilizes all these

functionalities is numerically intractable due to the exponentially growing number of terms in the (multi-

object) filtering density, while existing approximations trade-off some of these functionalities for speed. To

this end, we develop a more efficient approximation suitable for online MOT by incorporating object features

and kinematics into the measurement model, which improves data association and subsequently reduces the

number of terms. Specifically, we exploit the 2D detections and extracted features from multiple cameras to

provide a better approximation of the multi-object filtering density to realize the track initiation/termination

and re-identification functionalities. Further, incorporating a tractable geometric occlusion model based on

2D projections of 3D objects on the camera planes realizes the occlusion handling functionality of the fil-

ter. Evaluation of the proposed solution on challenging datasets demonstrates significant improvements and

robustness when camera configurations change on-the-fly, compared to existing multi-view MOT solutions.

Keywords: Multi-view, Multi-sensor, Multi-object Visual Tracking, Occlusion Handling, Generalized

Labeled Multi-Bernoulli, Re-Identification, Adaptive Birth.

1. Introduction

Visual tracking is a branch of multi-object tracking (MOT), which aims at estimating an unknown number

of object trajectories from video sequences. There are two main approaches to MOT: track-by-detection

˚Corresponding author
Email addresses: linh.mavan@gist.ac.kr (Linh Van Ma), t.nguyen1@curtin.edu.au (Tran Thien Dat Nguyen),

ba-ngu.vo@curtin.edu.au (Ba-Ngu Vo), hyunsung.jang@lignex1.com (Hyunsung Jang), mgjeon@gist.ac.kr (Moongu Jeon)



PREPRINT: INFORMATION FUSION, VOL. 111, 102496, 2024, DOI: 10.1016/J.INFFUS.2024.102496

and track-before-detect. In the former, object detection is obtained independently and then supplied to the

tracker to generate track estimates, while the latter operates on the input signal without object detection.

In practice, track-before-detect is computationally intensive and track-by-detection is more commonly used,

especially for visual MOT due to the efficiency and reliability of 2D object detectors. The main challenges

are the uncertainties in the number of objects and data association. Numerous (track-by-detection) MOT

algorithms have been developed, usually under the three main paradigms: multiple hypothesis tracking

(MHT) [1]; joint probabilistic data association (JPDA) [2]; and random finite set (RFS) [3].

The advancement and popularity of 2D visual MOT is mainly driven by fast and reliable 2D object

detectors. When object motion is slow (relative to the frame rate) and object detection is accurate, simple

trackers with kinematic/shape cues such as SORT [4] and IoU-Tracker [5] can achieve accurate tracking rate

with little computation time. For challenging scenarios, with higher levels of uncertainty, more sophisticated

trackers are needed [6, 7]. In addition, objects in 2D images are usually rich in visual features (e.g.,

pedestrians walking on the streets) and visual cues that can be exploited to distinguish different objects

[8, 9], improve data association as well as re-identification of lost tracks when they re-appear [8], assuming

slow variations in the visual appearance of objects.

Since objects such as people, cars, drones, etc. reside in the 3D world, 2D trajectories are not adequate

for scene understanding or post-tracking analysis [10, 11], which requires 3D visual tracking. Moreover,

trajectories in 3D world frame are more informative for applications such as sports analytics, age care,

school environment monitoring, etc. Multi-view data also helps resolving occlusions since objects occluded

in one view can be detected in other views.

A popular solution to 3D visual tracking is applying MOT to 3D detections obtained by using multi-

view fusion to reconstruct objects in 3D from the 2D multi-view detections [12, 13]. However, unlike

the detection of objects in 2D images, determining the 3D locations of objects from multi-view images is

challenging [14, 15]. While some deep learning solutions can achieve high detection accuracy, training 3D

object detectors is computationally demanding, especially for high dimensional scenarios (e.g., large number

of cameras) [16]. Moreover, when the camera configurations change, the detectors need to be retrained,

which limits the online operation of the tracker.

We propose a 3D visual tracking algorithm that exploits the extracted features from 2D multi-view de-

tections via multi-sensor MOT to automatically initiates/terminates and re-identifies tracks as well resolving

occlusions. Unlike many of the 3D visual tracking techniques that only provide global trajectories on the

ground plane, the proposed solution processes 2D detections from multiple monocular cameras, online, to

provide trajectories in 3D world frame. Our approach takes advantage of advances in 2D object detection

and multi-sensor MOT that exploits geometric information from cameras with overlapping fields of view

to accurately estimate the shape and position of 3D objects. The proposed multi-view MOT (MV-MOT)

algorithm has a linear complexity in the number of detections across all cameras. Moreover, it does not
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require detector to be retrained when the cameras are reconfigured, and is amenable to seamless fusion

with other types of sensor data. Performance evaluations on challenging datasets demonstrate significant

improvements in tracking accuracy compared to existing solutions, and robustness when camera configura-

tions change on-the-fly. Ablation studies are also presented to illustrate its advantages. A schematic of the

proposed 3D visual tracking solution is shown in Fig. 1. Our contributions are summarized as follows:

• Novel multi-object dynamic and measurement models that jointly account for object kinematics, shapes,

visual features on different cameras, and occlusion (including partial and complete occlusion);

• An approximation of the MV-MOT filter that automatically performs 3D track initialization/termination,

re-identification, and occlusion handling using 2D multi-view monocular detection, with linear complexity

in the number of detections across the cameras.

• Extensive experiments to evaluate the performance on challenging benchmarks including the Curtin

multi-camera (CMC) [17] and WILDTRACK (WT) [13] datasets.
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Figure 1: Schematic of the proposed 3D MV-MOT solution. Multi-view detections (bounding boxes and visual features from
all cameras) is supplied to the MV-MOT filter, which integrates multi-object dynamic and measurement models to realize all
MOT functionalities.

The paper is organized as follows. In Section 2 related works in 2D/3D object detection and tracking

are discussed. Section 3 introduces the dynamic and measurement models together with the Bayes recursion

that form our 3D visual MV-MOT solution. In Section 4, we propose an efficient approximation of the

MV-MOT filter that realizes automatic track initiation/re-identification and occlusion resolution. Extensive

experiments to verify the effectiveness of our tracking solutions are given in Section 5, and Section 6 concludes

the paper.
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2. Related Works

2.1. Visual Multi-Object Detection

Multi-object detection from 2D images is a key research topic in computer vision. Early detectors

use template matching to localize objects in images [18]. Many learning-based solutions rely on trainable

classifiers such as support vector machines or Adaboost to detect objects [19] using features such as Haar,

scale-invariant feature transform (SIFT) [20], and histogram of oriented gradients (HOG) [21]. Deep learning

has become popular in object detection due to the utility of convolutional neural networks (CNNs) [22].

Combinations of effective region-proposal algorithms [23] and CNN features (i.e., features extracted from

CNNs) have resulted in real-time, high-performance 2D object detectors [24]. YOLO algorithms that bypass

the region-proposal step by casting detection as a regression problem are significantly more efficient [25].

Recently, algorithms that formulate object detection as a set of learning tasks have also been proposed [26].

Publicly available large-scale datasets have been instrumental for the fast-paced development of 2D object

detection solutions, especially learning-based methods [27, 28].

Detecting occluded objects in 2D images is a challenging problem. Multi-view images provide more

accurate detection than single-view images by fusing information from different views. In [29], a probabilistic

occupancy map is constructed from background-subtracted images to locate objects on the ground plane.

However, this method tends to generate a high number of false alarms. Nonetheless, this could be reduced

by the Bayesian network-based technique proposed in [30]. Alternatively, Gibbs sampling is used in [31] to

generate the number of objects and their spatial locations from a posterior (conditioned on 2D detections).

CNN features can also be used for multi-view detection, e.g., in [16] a discriminative CNN feature extraction

module is used in conjunction with a generative occlusion model to construct an existence probability map

of objects on the ground plane, while in [32], CNN features are projected to the ground plane and then fed

into classifiers to localize objects. Methods based on similar projections are also proposed in [33, 34].

2.2. Visual Multi-Object Tracking

Visual MOT solutions can be categorized as online or batch. Batch algorithms estimate object trajecto-

ries from a batch of data, with computational complexities per time step growing over the time window. On

the other hand, online algorithms estimate object trajectories at each time step when new data arrive, with

computational complexities per time step that are independent of time, and hence are preferred over batch

algorithms in practice. In 2D visual MOT, algorithms that exploit only motion and shape information are

fast but cannot handle complex scenarios [5, 4]. Alternatively, visual features of objects can be used to im-

prove tracking. Hand-crafted features (e.g., SIFT, HOG) are not effective in distinguishing different objects

[35], and CNN features are more suitable due to the multi-scale representation. In [35] separate models for

detection and feature extraction are used. While using a single model for both tasks was demonstrated to
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have better efficiency in [36], a balance between the two tasks needs to be considered [9]. State-of-the-art

(SOTA) 2D multi-object trackers that utilize feature cues in the literature include POI [37], MOTDT [35],

DeepSORT [38], and GSDT [39].

Multi-view MOT solutions are becoming increasingly important due to the proliferation of cameras and

the better tracking performance over single-view techniques. Homography constraints are used to track

human feet in [40], while in [41] heads are localized in single-view images and then transformed to world

coordinates to perform tracking. In [42], principal axes are used to associate tracklets between cameras,

while in [43] advanced semantic cues are used. In [44], 2D detections are mapped into 3D positions, and

then combined with relevant cues (i.e., motion, features, geometry proximity) to associate tracklets using a

hierarchical composition model. In [45, 46], 3D objects of different classes are tracked with a 3D track query

model using multiple monocular cameras for autonomous driving applications.

Occlusion handling is an important functionality of visual tracking. In the single-view case, certain

solutions rely on detectors that can localize parts of the objects [47], albeit training such detectors to

yield accurate localization results is difficult. A popular approach is to use designated modules that analyze

occlusion, using object depth [48], or spatial information of objects and their interactions to resolve occlusion

[49, 50]. In the multi-view case, occlusion can also be implicitly resolved in the multi-view data fusion process,

usually exploiting object locations, either at the detection or tracking step [16, 17].

Data association is a crucial and challenging problem in track-by-detection MOT. Simple algorithms such

as the global nearest neighbor (GNN) [2] consider a single hypothesis of data association. More sophisticated

MOT frameworks such as MHT, JPDA, and RFS have demonstrated improved tracking performance by

keeping multiple data association hypotheses. The labeled RFS solutions [51], such as the GLMB filter, are

well suited for online and multi-view MOT due to the low-complexity and efficiency [52]. Indeed, the GLMB

filter has been used in various computer vision problems [6, 7], including multi-sensor data association for

multi-view occlusion handling [17].

While MOT functionalities such as data association, track initiation/termination, re-identification, and

occlusion handling are captured in the GLMB filtering recursion [52], an exact implementation realizing all

these functionalities is numerically intractable. In [17], an approximation was developed to address occlusion,

but the re-identification functionality was neglected, and track initiation requires a combination of accurate

prior birth models (which is not always available) with clustering. While object features improve tracking

performance [8, 9], they have not been exploited by the filter to improve data association and resolve track

re-identification. Moreover, the occlusion model in [17] does not account for partial occlusions, and thus was

unable to exploit SOTA 2D object detection technique [53]. Without accurate prior information, initializing

tracks from multi-sensor measurements is challenging due to the unknown number of new tracks, miss-

detection, false alarms, and the large number of possible detection combinations from multiple sensors. The

recent solution in [54] utilizes Monte Carlo (MC) technique to initialize tracks where existence probabilities
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depend on their measurement likelihood and how likely the detections are already associated with known

tracks. While, this solution can be directly applied to visual tracking, it is difficult to find a balance between

speed and accuracy not to mention the inability resolve track appearance-reappearance.

3. Bayesian Multi-View MOT

This section presents a Bayesian tracker that can handle all functionalities of a multi-view multi-object

tracker from automatic track initialization, termination, re-identification to multi-view data association and

occlusion handling. In particular, details on the object dynamic and measurement models will be given

together with a Bayes recursion that propagates the multi-object density over time. Notations commonly

used in this paper are tabulated in Tab. 1.

Table 1: List of symbols.
Notation Description

b Kronecker product (for matrices)
hX

ś

xPX
hpxq with hH “ 1

xf, gy
ş

fpxqgpxqdx, inner product of f and g,
j : k j, j ` 1, ..., k

xpj:kq xpjq, xpj`1q, ..., xpkq

xj:k xj , xj`1,..., xk

X single object state space
L discrete label space
B discrete label space for new birth objects
X labled multi-object state

LpXq set of labels of multi-object state X
x “ px, ℓq labeled single-object state (with label ℓ)

π multi-object density
Ω MS/MV-GLMB recursion operator

tpr
pℓq

B , p
pℓq

B quℓPB parameters of new birth objects
fS,`px`|x, ℓq single-object transition density

PS,`pxq survival probability of labeled state x

Zpcq measurement space of camera c

Zpcq set of measurements of camera c

zpcq single-view measurement of camera c

gpcqpzpcq|xq single-object single-view measurement
likelihood function for camera c

gpcqpZpcq|Xq multi-object single-view measurement
likelihood function for camera c

g pZ|Xq multi-object multi-view measurement
likelihood function

P
pcq

D px,Xq detection probability for camera c

αpℓ,cq observed feature of object ℓ at camera c

Φpcqpxq box bounding an object with state x in
camera c’s image plane

γpcq association map for camera c
γ multi-view association map

Γpcq space of association maps for camera c
Γ space of multi-view association maps

Lγpcq live label set of association map γpcq

δY rXs generalized Kronecker delta function, takes
on 1 if X “ Y , and 0 otherwise

N p.;µ, P q Gaussian pdf with mean µ and covariance P
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3.1. Object Dynamic Model

The state x “ px, ℓq of an object consists of attribute x from an attribute space X and a label ℓ from a

discrete label space L. An object born at time k, is assigned a time-invariant label ℓ “ pk, ιq, where ι is a

unique index to differentiate objects born at the same time. The attribute x consists of 3D position ζ, 3D

velocity 9ζ, and shape parameter ς. The multi-object state at a given time k is a finite set of individual object

states in X ˆ L with distinct labels [51].

At time k, a set (possibly empty) of new objects is born. The set of all possible labels of object born

at time k is a subset of L, denoted by B. A new object with label ℓ is born with probability r
pℓq

B , and

conditional on which its attribute is distributed according to p
pℓq

B . The birth parameters tpr
pℓq

B , p
pℓq

B quℓPB

could be provided apriori (if statistics of newborns are known), or estimated from the data.

Given a multi-object state X at time k, each px, ℓq P X either survives to the next time with probability

PS,`px, ℓq or dies with probability 1 ´ PS,`px, ℓq. Conditional on survival the object takes on the new state

px`, ℓ`q according to the transition density fS,`px`|x, ℓqδℓrℓ`s [51], where the generalized Kronecker delta

δℓrℓ`s, defined to be 1 when ℓ “ ℓ` and 0 otherwise, ensures the label remains unchanged. The multi-

object state X` at the next time is the superposition of newborns and surviving objects, and is distributed

according to the multi-object Markov transition density f`pX`|Xq (an explicit expression is not needed in

this work, nonetheless it can be found in [51]). Hereon, we use the subscript ’+’ to indicate the next time.

In this work, we use the survival probability model proposed in [6]. The shape parameter ς is a triplet

of (logarithms of) the half-lengths of the principal axes of the ellipsoid containing the object, and follows a

random-walk model. The kinematics (ζ, 9ζ) follows a nearly constant velocity model. Specifically, given the

current attribute x, the next attribute x` is distributed by [17]

fS,`px`|x, ℓq “ N px`;Fx` b,Qq , (1)

where

F “

»

–

I3pT q 06ˆ3

03ˆ6 I3

fi

fl , I3pT q “ I3 b

»

–

1 T

0 1

fi

fl , b “

»

–

06ˆ1

´υpςq{2

fi

fl ,

Q “

»

–

V pυpζq, T q 06ˆ3

03ˆ6 diagpυpςqq

fi

fl , V pυpζq, T q “ diagpυpζqq b

»

–

T 2

2

T

fi

fl

”

T 2

2 T
ı

,

T is the sampling period, υpζqand υpςqare 3D vectors of noise variances for the position and shape parameter,

respectively. The Gaussianity of the logarithms of the half-lengths ensures that they are non-negative. This

is equivalent to log-normal distributions of these half-lengths with unit-mean and variances eυ
pςq

i -1, i=1, 2, 3

[17].
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3.2. Multi-View Measurement Model

Given cameras 1, ..., C and a multi-object state X, each x P X is detected by camera c with probability

P
pcq

D px;Xq and generates the single-view measurement zpcq P Zpcq (Zpcq is the measurement space of the

camera c) with likelihood gpcqpzpcq|xq, or miss-detected with probability 1´P
pcq

D px;Xq. While the detection

probability is assumed independent of the other (or all) objects in most MOT algorithms, this assumption

is not valid in occlusions. The objects in Xztxu could occlude x, which translates to a low detection

probability for x. Thus a suitable detection probability model that accounts for occlusion is needed for

occlusion handling [17].

3.2.1. Single-View Single-Object Measurement Model

Conditional on detection by camera c, x is observed as a 2D bounding box and a feature vector, i.e.,

zpcq “ pz
pcq
p , z

pcq
e , z

pcq

f q where z
pcq
p is the box center, z

pcq
e is its extent (parameterized by the logarithms of the

width and height in the camera c’s image plane), and z
pcq

f is the feature vector (pertaining to appearance

or identity). Since the kinematic and feature observations of an object are independent, the single-view

single-object measurement likelihood gpcqpzpcq|xq can be written as

gpcqpzpcq
p , zpcq

e , z
pcq

f |xq “ g
pcq

b pzpcq
p , zpcq

e |x, ℓqg
pcq

f pz
pcq

f |ℓq, (2)

where g
pcq

b and g
pcq

f are, respectively, the bounding box and feature measurement likelihoods.

The bounding box measurement pz
pcq
p , z

pcq
e q is a noisy version of the box Φpcqpxq bounding the image of

object px, ℓq in camera c’s image plane, which can be computed analytically via the projection matrix, see

[55]. Hence, likelihood of pz
pcq
p , z

pcq
e q is given by [17]

g
pcq

b pzpcq
p , zpcq

e |x, ℓq “ N

¨

˝

»

–

z
pcq
p

z
pcq
e

fi

fl ; Φpcqpxq,diag

¨

˝

»

–

υ
pcq
p

υ
pcq
e

fi

fl

˛

‚

˛

‚, (3)

where υ
pcq
p and υ

pcq
e are the noise variances for the center and the extent (in logarithm) of the box, respectively.

The feature measurement vector z
pcq

f captures the object’s visual appearance, e.g., color histograms, HSV

features, Deep Learning features. Visual features can be used to identify objects since they are relatively

stable [9] or slowly varying with time [36]. Nonetheless, visual features can suddenly change [4], and are

not always reliable [9]. Thus, visual features models usually accommodate several modes of observation [4].

Without loss of generality, we use a likelihood for z
pcq

f with two modes, a strong mode to capture the stable

slow variation, and a weaker mode to capture the sudden changes. Specifically,

g
pcq

f pz
pcq

f |ℓq 9σsf pz
pcq

f , αpℓ,cqq ` σ̄sf pz
pcq

f , ᾱpℓ,cqq, (4)
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where: sf is a non-negative function that monotonically increases with the similarity between its arguments;

αpℓ,cq and ᾱpℓ,cq are, respectively, the nominal feature vectors for the stable and unstable modes, with

respective weights σ and σ̄. Further, following [36], the slow variation of the feature vector is modeled by

adaptively updating the nominal feature at each time step via

α
pℓ,cq

` “ ϑ0α
pℓ,cq ` p1 ´ ϑ0qz

pcq

f ,

where ϑ0 is a weight that controls the contribution of the observed data to the nominal feature. In essence,

αpℓ,cq is the exponential moving average of the observed feature with momentum ϑ0. The initial the feature

αpℓ,cq, of object ℓ at camera c, can take on the feature computed from the measurement that it is initialized

with or some prior value if it is initially misdetected.

3.2.2. Single-View Multi-Object Measurement Model

The measurement set Zpcq from camera c is a superposition of object-originated measurements and inde-

pendent false positives (or clutter). Conditional on the multi-object state X, the object-originated measure-

ments are statistically independent [51]. False positives are commonly parameterized by an intensity function

κpcq, where the number of false positives is Poisson distributed with mean xκpcq, 1y, and individual false pos-

itives are independent and identically distributed according to κpcq{xκpcq, 1y, where xf, gy “
ş

fpxqgpxqdx.

In most MOT algorithms κpcq is often assumed constant and known apriori. Nonetheless, it can also be

estimated on-the-fly along with the multi-object state, albeit with additional computations [56].

To account for unknown data association, it is necessary to consider different object-to-measurement

mappings. At time k, an association map for camera c is a mapping γpcq : L Ñ t´1 : |Zpcq|u such that each

label can only be mapped to at most one measurement, where |Zpcq| denotes the cardinality of Zpcq [51]. For

a label ℓ, γpcqpℓq “ ´1 represents a non-existent object, γpcqpℓq “ 0 represents a miss-detection at camera c,

while γpcqpℓq ą 0 represents the scenario that ℓ generates measurement z
pcq

γpcqpℓq
at camera c. Let Γpcq denote

the set of all association maps, LpXq the set of labels of multi-object state X, and Lγpcq fi
␣

ℓ : γpcq pℓq ě 0
(

is the live label set of γpcq. Then, the single-view multi-object measurement likelihood for camera c is given

by [51]

gpcqpZpcq|Xq9
ÿ

γpcqPΓpcq

δLpγpcqqrL pXqs

”

ψ
pc,γpcq

pLp¨qqq

Zpcq,X
p¨q

ıX

, (5)

where δArBs “ 1 if A “ B and zero otherwise,

ψ
pc,jq

tz
pcq

1:|Zpcq|
u,X

pxq “

$

’

&

’

%

1 ´ P
pcq

D px;Xq , j “ 0

P
pcq

D px;Xqgpcq
pz

pcq

j |xq

κpcqpz
pcq

j q
, j ą 0

. (6)
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3.2.3. Multi-View Multi-Object Measurement Model

Noting that γp1qpℓq “ ... “ γpCqpℓq “ ´1 if ℓ does not exist, we define a multi-view association map as a

tuple γ fi pγp1:Cqq of association maps such that, γpcqpℓq “ ´1 for any c implies, γpcqpℓq “ ´1 for all c. This

means γ : L Ñ t´1uC Z pJp1q ˆ ¨ ¨ ¨ ˆ JpCqq, where Jpcq fi t0 :
ˇ

ˇZpcq
ˇ

ˇu. Let Γ denote the space of multi-view

association maps, Z fi pZp1:Cqq, and assuming that conditional on X, these constituent sets are mutually

independent, then the multi-view multi-object measurement likelihood is given by [52]:

g pZ|Xq 9
ÿ

γPΓ

δLγ
rL pXqs

”

ψ
pγpLp¨qqq

Z,X p¨q

ıX

, (7)

where Lγ fi tℓ : γp1qpℓq, ..., γpCqpℓq ě 0u denotes the live label set of the multi-view association map γ, and

ψ
pjp1:Cq

q

Z,X pxq fi

C
ź

c“1

ψ
pc,jpcq

q

Zpcq,X
pxq . (8)

3.3. Bayesian Multi-View MOT Filter

In Bayesian estimation, the multi-object filtering density is the probability density of the current multi-

object state conditioned on the observation history. It encapsulates all statistical information on the multi-

object state, given the observed data, and prior information described by the multi-object transition density

fp¨|¨q and observation likelihood gp¨|¨q. Multi-object state/trajectory estimate can be determined from the

multi-object filtering density via the Joint Multi-object (JoM) or Marginal Multi-object (MaM), including

labeled-MaM, estimators [57], [58]. The latter are commonly used due to their computational tractability.

The MaM/labeled-MaM estimate is the most probable (or expected) multi-object state given the most

probable cardinality/label-set [57], [58].

The multi-object filtering density π can be propagated forward to the next time via the Bayes recursion

π`pX`q 9 gpZ`|X`q

ż

f`pX`|XqπpXqδX. (9)

This approach is not only applicable to objects with independent motion, and detection observations, but

for more general models including cell mitosis [7], social force model [59], track-before-detect [6], as well

as merged measurements [60]. It also offers the capability to fuse different measurement types, e.g., track-

before-detect measurement with detections, simply by multiplying their likelihoods.

The (exact) Bayes MOT filter (9) would fulfill all MOT functionalities. The integration of suitable

multi-object dynamic and observation models into the multi-object filtering density allows the filter to

initiate/terminate/re-identify tracks, resolve multi-view data association and occlusions, from the observed

data. Unfortunately, exact implementation is intractable due mainly to the exponential growth in memory

requirement and computational resources. Existing approximations, designed for speed in generic applica-

tions, impede MOT functionalities such as track initiation/re-identification and occlusion resolution.
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4. Approximate MV-MOT Filter

This section presents an approximate Multi-View MOT (MV-MOT) filter that realizes automatic track

initiation/re-identification and occlusion resolution by using an adaptive birth model that accounts for

reappearing objects and a high-fidelity geometric occlusion model. In Subsection 4.1, we present a commonly

used approximation to the Bayes MV-MOT filter (9), which involves a generalized labeled multi-Bernoulli

(GLMB) approximation for analytical tractability, and truncating the resulting GLMB components for

numerical tractability [17]. A high-fidelity yet tractable occlusion model based on projections of 3D objects

on the camera planes that accommodates full/partial occlusions is developed in Subsection 4.2. In Subsection

4.3, we detail an adaptive birth model to realize track initiation and rectify the GLMB truncation to realize

re-identification.

4.1. Multi-View GLMB Recursion

This subsection outlines the two-step approximation of the Bayes MV-MOT filter. Consider first the

approximation of the multi-object filtering density π, by a GLMB of the form

pπ pXq “ δ|X| r|L pXq|s
ÿ

I,ξ

ωpI,ξqδI rL pXqs

”

ppξq
ıX

, (10)

where: I P F pLq, the class of all finite subsets of L; ξ P Ξ, the space of multi-view association map histories

γ1:k; each ω
pI,ξq is a non-negative weight such that ΣI,ξω

pI,ξq “ 1; and each ppξqp¨, ℓq is a probability density

on X. The weight ωpI,ξq can be interpreted as the probability of hypothesis pI, ξq, and conditional on pI, ξq,

ppξqp¨, ℓq is the probability density of the attribute of ℓ P I. A GLMB is completely characterized by its

parameters, and hence we adopt the abbreviation

pπ “

!

pωpI,ξq, ppξqq : pI, ξq P FpLq ˆ Ξ
)

. (11)

Remark 1: Note that the GLMB cardinality distribution, from which we determine the most probable

cardinality n˚ for the MaM estimator, is given by

Probp|X| “ nq “
ÿ

I,ξ

ωpI,ξqδnr|I|s.

For efficiency, instead of computing the most probable multi-object state, we compute the estimated states

from ppξ˚qp¨, ℓq for each ℓ P I˚, where pI˚, ξ˚q is the most probable hypothesis such that |I˚| “ n˚.

The class of GLMBs is a versatile family of multi-object densities due to its closure under the Bayes

recursion (9) and efficient approximation (linear complexity in the total number of detections across the

sensors) for commonly used multi-object system models [52]. Specifically, for P
p1:Cq

D px;Xq “ P
p1:Cq

D pxq, if
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the multi-object filtering density at the current time is a GLMB, then it is also a GLMB at the next time,

and given by the MS-GLMB recursion [52]

pπ` “ Ω`ppπ;P
p1:Cq

D,` ,fB,`q,

where fB,` fi tpr
pℓq

B,`, p
pℓq

B,`quℓPB`
denotes the parameters of the birth model1. While the number of GLMB

components grows exponentially with time, they can be truncated with minimum L1-error, using multi-

dimensional rank assignment [61] or Gibbs sampling [62]. Unfortunately, when P
p1:Cq

D px;Xq ‰ P
p1:Cq

D pxq

as per our occlusion model, π` is not a GLMB, and is computationally intractable in general.

An approximate multi-view GLMB (MV-GLMB) filter for occlusion models with a general P
p1:Cq

D px;Xq

has been developed in [17] by combining piecewise approximation of P
p1:Cq

D px;Xq with importance sampling

via the Gibbs sampler. The approximate GLMB filtering density is propagated using the MV-GLMB

recursion

pπ` “ pΩppπ;P
p1:Cq

D,` ,fB,`q, (12)

summarized in Alg. 2 of [17], which extends the MS-GLMB filter to address P
p1:Cq

D px;Xq ‰ P
p1:Cq

D pxq.

Remark 2: The GLMB filtering density can be further approximated by retaining only the best compo-

nent after each filtering cycle. This approximation uses only the most likely (multi-sensor) measurement-

to-track assignment, which is conceptually similar to the strategy of the global nearest-neighbour (GNN)

tracker [2]. Although this results in considerable improvement in processing speed, performance is expected

to degrade, especially in low signal-to-noise scenarios (see also the ablation study in Subsection 5.3.2).

Fig. 2 illustrates how our new adaptive birth model and occlusion model is integrated into the MV-

GLMB filter to realize the MOT functionalities of (automatic) Track Inititialization, Track Re-Identification,

Track Termination, and Occlusion Handling. Details on the proposed occlusion model will be given in the

next subsection, and the adaptive estimation of the birth model parameters tpr
pℓq

B , p
pℓq

B quℓPB`
will be given

in Subsection 4.3.

4.2. Occlusion Modeling

Rather than using an external occlusion handling module to provide better tracks, the Bayes MOT filter

accounts for occlusion via an occlusion model, described by the detection probability of the objects. In the

presence of occlusions, the more accurate model is, the better the tracking results. An occlusion model was

proposed in [17], where the detection probabilities of objects in the shadow regions of others (w.r.t. the

1The MS-GLMB recursion also depends on the measurements and other multi-object system parameters, but we suppress
them for clarity.
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Camera 1 Camera C

2D Bounding 
Boxes & Features

2D Bounding 
Boxes & Features…

MS-GLMB Recursion

Adaptive Birth 
Model

Occlusion Model

Tracks

Figure 2: Schematic of the proposed multi-view MOT filter, with Adaptive Birth Model and Occlusion Model that realize
MOT functionalities.
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PD=0.65

PD=0.31
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Figure 3: For illustration, tracks are indexed from the closest to the furthest from the camera. Track 4 has no overlap with any
other tracks and thus has maximum detection probability. Tracks 1 and 2 overlap with other tracks, but closer to the camera
(i.e., lower bottom corner), hence they also have maximum detection probability. Track 6 overlaps with track 5, but track 5
has higher detection probability, because it is closer to the camera.

LoS of the camera) are assigned small values. While this model is accurate for full occlusions, it does not

address partial occlusions, where the detector still has a high probability of detecting the objects.

In this subsection, we present a new occlusion model that accommodates partial (and full) occlusions.

Our model is based on the proportion of area overlap between the boxes bounding the images of the occluded

and occluding objects on camera’s image plane. The larger the overlap, the lower the detection probability

of the occluded object. Noting that an object can only be occluded by those in front of it (i.e., closer to

the camera), let Frpcq
px;Xq denote the subset of objects in X that are in front of x P X with respect to

camera c. Then the occlusion score of x is given by

Opcq px;Xq “
Area

´

Φpcqpxq
Ş

´

Ť

x1PFrpcqpx;Xq Φ
pcqpx1q

¯¯

Area
`

Φpcqpxq
˘ , (13)

where Φpcqpxq “ Φpcqpxq for x “ px, ℓq, and AreapSq is the area of a 2D shape S. Since the more occluded
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the object is the less likely it will be detected, we use the following the detection probability

P
pcq

D px;Xq “ maxpϵ, 1 ´ ϵ´Opcq px;Xqq, (14)

so as to cap it between ϵ and 1´ ϵ. Some example detection probability values for a given camera according

to this model is shown in Fig. 3.

Remark 3: The subset Frpcq
px;Xq can be determined by comparing the distances of the objects from

camera c. Alternatively, assuming all objects are on the same ground level, we can compare the lower

bottom corners of the bounding boxes of the objects on camera c’s plane: those with lower bottom corners

are closer to the camera.

4.3. Adaptive Birth Modeling

While the MV-GLMB filter can provide automatic track initiation and re-identification, it requires a

combination of accurate prior birth model (that varies with time) and prudent approximation. In this

subsection, we develop a tractable technique to estimate birth model online and rectify the GLMB truncation

process to realize track initiation and re-identification.

4.3.1. Adaptive Birth Model Parameters

In [54], an efficient technique was developed for estimating the LMB birth model parameters tpr
pℓ`q

B,` ,

p
pℓ`q

B,`quℓPB`
(Section 3.1), using the current multi-sensor measurement. This approach seeks an empirical

LMB birth model that provides a good fit of the multi-camera measurement Z. Given the current GLMB

filtering density (11), suppose that the multi-camera measurement Z is generated from new birth objects

according to the multi-view association map γ̊ : B` Ñ t´1uC Z pJp1q ˆ ¨ ¨ ¨ ˆ JpCqq. Then, the best fitting

empirical LMB model is given by [54]

tppr
pℓ`q

γ̊ , pp
pℓ`q

γ̊ quℓ`PLγ̊
, (15)

where: Lγ̊ is the live label set of γ̊;

pr
pℓ`q

γ̊ “ min

˜

r˚
B,`,

λB,`rU p̊γpℓ`qqψ̄
p̊γpℓ`qq

Z,B pℓ`q

xrU p̊γp¨qq , ψ̄
p̊γp¨qq

Z,B p¨qy

¸

;

pp
pℓ`q

γ̊ px`q 9

ż

f`px`|x, ℓ`qp
pℓ`q

B,0 pxqψ
p̊γpℓ`qq

Z,B px, ℓ`qdx;

r˚
B,` is a prescribed maximum birth probability; λB,` is a prescribed expected number of births;

rU pjp1:Cqq “

C
ź

c“1

«

1 ´
ÿ

I,ξ

1ξpcqpIqpjpcqqωpI,ξq

ff

; (16)

ψ̄
pjp1:Cq

q

Z,B pℓq “ xpB,0p¨, ℓq, ψ
pjp1:Cq

q

Z,B p¨, ℓqy; (17)
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ξpcqpIq “ tγpcqpℓq : ℓ P Iu; pB,0px, ℓq is a prescribed prior birth probability density; ψ
pjp1:Cq

q

Z,B px, ℓq is

ψ
pjp1:Cq

q

Z,X px, ℓq in (7) with P
pcq

D px;Xq set to a prescribed (constant) detection probability P
pcq

D,B , and the

feature likelihood g
pcq

f pz
pcq

f |ℓq in the single-view single-object measurement likelihood (2) set to a uniform

distribution (hence, only the bounding box measurements are used in the birth model estimation).

The empirical LMB birth (15) is completely parameterized by the multi-view association map γ̊. This

birth model reduces prior knowledge on a large number of LMB model parameters to only four prescribed

parameters r˚
B,`, λB,` (usually set to 1), pB,0px, ℓq and PD,B . Intuitively, the componenst of a good fitting

empirical LMB should have significant existence probabilities.

Remark 4: Note that in this work, we used the multi-view association map γ̊ “ p̊γp1:Cqq instead of the

injection θB : Jp1q ˆ ¨ ¨ ¨ ˆ JpCq Ñ B` in [54]. The key difference is that γ̊ constrains each single-camera

detection to originate from at most one object (see Subsection 3.2.2). In contrast, θB relaxes this constraint

and allows each single-camera detection to originate from multiple objects, which can result in increased

false track initiations, especially for scenarios with large areas. Nonetheless, this relaxation enables the

authors to develop a Gibbs sampler to compute a good fitting (empirical LMB parameterized by) θB [54].

Since the Gibbs sampler in [54] cannot accommodate the constraint of at most one object per detection,

we use clustering to determine a good fitting (empirical LMB parameterized by) γ̊. Intuitively, the detections

generated by the same object at every camera would be clustered around the object’s position when projected

into the ground plane. Hence, the γ̊ constructed by clustering (single-camera) detections in the ground plane

so that each cluster corresponds to detections generated by an object, provides a good fit to the multi-camera

measurement Z. Note that since γ̊ is multi-camera association map, each detection can only belong to at

most one cluster.

The clustering algorithm is described in Alg. 1. The multi-view association map γ̊, represented as an

assignment matrix where each row consists of the measurement indices that belong to one cluster. In step

one, a set of initial cluster means is generated in a similar manner to the popular mean shift clustering

algorithm. In step two, γ̊ is constructed by sequentially appending each row of the associated measurement

indices. In the pseudocode, the ’TransformToGroundPlane’ function is a homography transformation taking

2D measurements to their ground plane positions. The ’dist’ function computes the distance between points

in the ground plane. The ’ComputeCentroid’ function returns the centroid in the ground plane with inputs

as a list of points and the corresponding indices specifying which points are used to compute the centroid.

4.3.2. Track Initialization and Re-Identification

The birth model enables the MV-GLMB recursion (12) to automatically initiates new tracks, and in

principle, re-identify reappearing tracks. Labels that have ever existed (up to the current time) are captured

in some components of the (untruncated) GLMB filtering density. When new data arrives, the MV-GLMB

recursion updates their existence probabilities accordingly so that those in the scene have high existence



PREPRINT: INFORMATION FUSION, VOL. 111, 102496, 2024, DOI: 10.1016/J.INFFUS.2024.102496

probabilities and vice-versa. However, in practice, component truncation deletes labels with prolonged low

existence probabilities permanently from the GLMB density. This means they cannot be recovered even

when new data support their reappearance, and each LMB birth parameter in tppr
pℓq

γ̊ , pp
pℓq

γ̊ quℓPLγ̊
could either

correspond to a new track, or reappearing track.

To restore the filter’s track re-identification functionality, we propose to retain tracks that would have

been deleted in the the GLMB truncation, herein referred to as Tentatively Terminated (TT) tracks, and

relabel the subset of tppr
pℓq

γ̊ , pp
pℓq

γ̊ quℓPLγ̊
with the labels of the TT tracks that best match them in visual

features2. A TT track retains the visual feature from its corresponding label in highest weighted GLMB

component at the time of TT, and will only be permanently deleted if it is not re-identified within a prescribed

period. Note that after relabeling we remove the corresponding TT track from the TT set. The GLMB

recursion with the relabeled LMB birth model will update the existence probabilities of the reappearing and

new birth tracks in accordance with the received multi-camera data.

Optimal assignment can be used to match the live labels Lγ̊ and the TT tracks, and only those with

matching scores above a recall threshold τR are relabeled. The matching score of a label ℓ` P Lγ̊ to a TT

label ℓ “ ps, ιq with feature αpℓ,cq from each camera c P t1 : Cu, is defined as

Rℓ`,ℓ “
k ´ s

epℓq
max

cPt1:Cu
sf

´

fpz
pcq

γ̊pcqpℓ`q
q, αpℓ,cq

¯

, (18)

where epℓq denotes the number of times that label ℓ is included in the GLMB density but not as a TT track,

fpz
pcq

j q denotes the feature component of the j-th measurement from camera c, and sf p¨, ¨q is the similarity

measure between two feature vectors, see also (12). The rationale behind the time ratio in (18) is that the

longer the label exists in the GLMB density, the more likely it still exists even though it is TT.

5. Experimental Results

This section presents experimental evaluations of our proposed 3D MV-MOT algorithm, referred to as

Multiview GLMB-Adaptive Birth (MV-GLMB-AB) filter, on the WILDTRACK (WT) [13] dataset (with

7 cameras) and the Curtin multi-camera (CMC) dataset (with 4 cameras, and five sequences CMC1-5)

[17]. While the WT dataset is popular for 3D MOT, it only provides the true ground plane positions of

the objects, not their 3D positions and extents. The CMC dataset fills this gap, with details on height,

width, and 3D position. Sequences 1-5 of the CMC dataset have different object densities for performance

evaluation with varying levels of difficulties. Further, sequences 4 and 5 also include jumping and falling

people to evaluate pose estimation capability.

2Visual features are better suited for re-identification because they are relatively stable over time [9], whereas kinematic
and shapes attributes vary with time, while tracks reappear almost independently from the locations where they disappeared.
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Algorithm 1: Clustering for Adaptive Birth.

1 Input: Z, h1:C , ϵ
2 Output: γ̊
3
4 Step 1: Generate Initial Cluster Means
5 S “ H
6 for c “ 1 : C do
7 Spcq “ TransformToGroundPlanepZpcqq

8 S “ S Y Spcq

9 while all elements in S not converge do
10 for g “ 1 : |S| do
11 if Srgs not converge then
12 P “ H;
13 for c “ 1 : C do
14 for i “ 1 : |Spcq| do
15 if distpSpcqris, Srgsq ă hc then
16 P “ P Y Spcqris

17 new Sg Ð K pminpP q ´ SrgsqminpP q

18 if dist(pSrgs, new Sgq ă ϵ then
19 Srgs is converge

20 Srgs Ð new Sg

21 Step 2: Generate Multi-View Association Map
22 γ̊ “ H; t “ 0;
23 for c “ 1 : C do
24 for i “ 1 : |Spcq| do
25 l “ ´1; p “ `8; t “ t` 1;
26 for j “ 1 : NumberOfRowp̊γq do
27 cen = ComputeCentroid(̊γrj, :s, Sp1:Cq)

28 d = dist
´

S
pcq

i , cen
¯

;

29 if pdăhcq^pdăpq^p̊γrj, cs“0q then
30 l “ j; p “ d;

31 if l “ ´1 then
32 M “ 01ˆC ; Mc “ i;
33 γ̊ “ AppendRowp̊γ,Mq;
34 else
35 γ̊rl, is “ i;

To quantify tracking performance, we use the track identity measure [63], including IDF1 score, numbers

of mostly tracked (MT) tracks, partially tracked (PT) tracks, and ID switches (IDS). We also report the

CLEAR MOT measure [64], including multi-object tracking accuracy (MOTA) score, numbers of false

positive (FP), false negative (FN), and OSPA(2) error [65, 66]. For evaluations that only considered ground

plane positions of the tracks, the Euclidean distance is used as the base-distance. For evaluations of 3D

trajectories with extents (a 3D ellipsoid), the GIoU distance (normalized to the interval [0,1]) between 3D

bounding boxes is used as the base-distance. The evaluation threshold is 1 meter for the Euclidean distance

and 0.5 for the GIoU distance. The cut-off distance for the OSPA(2) metric is set to 1 meter for Euclidean

base-distance and to 1 for GIoU base-distance. Since the filters involve random sampling, we evaluate their

performance over 25 Monte Carlo (MC) runs and report the mean and standard deviation of the results.
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Figure 4: 3D ellipsoid estimates from the proposed MV-GLMB-AB filter using CSTrack detection inputs. Top row: CMC5
dataset at frame 470 for cameras 2 and 3. Bottom row: WT dataset at frame 25 for cameras 2 and 5 (only objects inside
the red boundary are considered). The first two columns show the projected 3D estimates on the respective camera planes,
and the last column shows the 3D estimates. Each color corresponds to a unique object ID. Videos are also provided in the
supplementary materials.

In subsection 5.1 a comparison of tracking performance and run-time between the MV-GLMB-AB fil-

ter and other state-of-the-art methods, demonstrating the ability to re-identify tracks and uninterrupted

operations when cameras are added, removed, or repositioned on-the-fly. Subsection 5.2 benchmarks the

tracking performance of MV-GLMB-AB filter against baseline single-sensor filters that process ground plane

measurements from ideal detectors, trained on the ground truth dataset. An ablation study on the models

used in the MV-GLMB-AB filter is presented in Subsection 5.3.

The following model parameters are used for all experiments in this section. The dynamic noise

variance (measured in squared meters) is set to υpζq=r0.0012, 0.0012, 0.0012sT for the CMC dataset and

υpζq=r0.0225, 0.0225, 0.0225sT for the WT dataset, while υpςq=r0.0036, 0.0036, 0.0004sT for both. For each

camera, the measurement noise variance (measured in pixels) is set to υ
pcq
p “ r400, 400sT , and υ

pcq
e =r0.00995,

0.0025sT for upright objects and υ
pcq
e =r0.0025, 0.00995sT for fallen objects. Since we observe a low number

of false positive measurements in the tested scenarios, we set the clutter rate to 5 for all sensors in our

implementation. If a higher number of false positive measurements is observed, the clutter rate can be

estimated on-the-fly from the data.

5.1. Performance Evaluation

5.1.1. Fixed multi-camera configuration

We compare the proposed filter with current 3D MOT algorithms that process 2D multi-view detections,

namely the MV-GLMB [17] and MS-GLMB [52] filters. Note that the CMC4-5 sequences are used to

compare the performance on scenarios involving human poses (upright or fallen) with the MV-GLMB filter.
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Figure 5: Track re-identification: 3D ellipsoid estimates from the MV-GLMB-AB filter using CSTrack detection. Object
disappearance-reappearance (in CMC) is simulated by turning off all cameras mid-scene for 30 frames. Top row: CMC2-all
cameras off from frames 130-160. Middle row: CMC3-all cameras off from frames 131-161. Bottom row: CMC5-all cameras
off from frames 280-310. Columns 1 and 2 show estimates, projected on camera 2 and in 3D, before turning off all cameras.
Columns 3 and 4 show the estimates 5 frames after all cameras are turned back on.

The proposed filter’s output on typical scenarios in the CMC5 sequence and the WT dataset with

CSTrack detections are shown in Fig. 4. For the CMC5 sequence, the proposed MOT filter yields accurate

object positions and poses. The relatively poor detection quality of the CSTrack detector (see Tab. 6) on

the WT dataset is manifested in several misdetections in the proposed filter’s output.

Fig. 5 illustrates the filter’s re-identification capability, where object disappearance-reappearance is sim-

ulated by turning off all cameras mid-scene for 30 frames so that most or all of the tracks are terminated

before the cameras are on again. Lost 3D tracks are re-identified after they reappear using feature informa-

tion from monocular camera images. Recall performance is best when the features are stable and unique

across frames as per CMC1 and CMC2 (see also video supplementary material). Recall is poor when the

objects have similar appearance (i.e., non-unique features) as per CMC3, or change their appearance quickly

(i.e., unstable features) as per CMC5 with pose changes.

Quantitative comparison with other multi-view MOT algorithms are shown in Tab. 2 for the WT dataset,

Tab. 3 for the CMC dataset, and Tab. 4 for the CMC dataset with all cameras turned off mid-scene to assess

re-identification. The higher MOTA, IDF1 scores, and lower OSPA(2) errors, indicate superior performance

of the proposed MOT filter (note that there is a very small performance difference between the two different

implementations of the adaptive birth model, which will be discussed in the ablation study). For the CMC
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Table 2: Tracking performance (in the ground plane) on the WT dataset with the CSTrack detector: MC means and 1 standard
deviation (shown in parenthesis, only reported for the main measures). The best result for each sequence is Bolded.

Detector Tracker MTÒ PTÓ MLÓ FPÓ FNÓ IDsÓ MOTAÒ IDF1Ò OSPA(2)
Ó

CSTrack

Ours 101 134 77 5040 2804 273 14.7(3.37) 50.9(2.11) 0.79(0.01)

MV-GLMB 57 152 103 3916 4161 422 10.7(2.13) 33.2(1.07) 0.86(0.01)

MS-GLMB 58 153 100 3890 4148 419 11.1(2.06) 33.3(0.97) 0.86(0.01)

FairMOT

Ours 119 127 66 3399 2463 215 36.1(2.60) 58.4(1.98) 0.73(0.01)

MV-GLMB 45 147 120 3237 4353 383 16.2(1.79) 31.8(0.77) 0.86(0.00)

MS-GLMB 42 146 123 3260 4404 379 15.5(1.48) 31.4(0.8) 0.87(0.00)

Table 3: Tracking performance (in 3D and ground plane) on the CMC dataset with the CSTrack detector: MC means and 1
standard deviation (shown in parenthesis, only reported for the main measures). The best result for each sequence is Bolded.

Seq. Tracker
Evaluation with 3D ellipsoid estimates Evaluation with ground plane estimates

FPÓ FNÓ IDsÓ MOTAÒ IDF1Ò OSPA(2)
Ó FPÓ FNÓ IDsÓ MOTAÒ IDF1Ò OSPA(2)

Ó

CMC1

Ours 0 4 0 99.4(0.00) 99.7(0.00) 0.3(0.00) 0 4 0 99.4(0.00) 99.7(0.00) 0.07(0.00)

MV-GLMB 47 3 0 92.1(2.86) 96.0(1.49) 0.83(0.02) 47 2 1 92.2(2.89) 96.0(1.50) 0.78(0.02)

MS-GLMB 20 2 0 96.4(1.97) 98.1(1.11) 0.82(0.01) 20 2 0 96.5(1.98) 98.1(1.11) 0.76(0.02)

CMC2

Ours 18 36 5 97.1(1.43) 90.2(6.62) 0.41(0.03) 16 33 4 97.4(1.38) 94.0(4.28) 0.26(0.05)

MV-GLMB 353 41 56 78.3(2.76) 52.4(6.79) 0.88(0.02) 337 26 46 80.2(2.86) 64.4(5.92) 0.87(0.02)

MS-GLMB 141 126 78 83.3(2.71) 47.8(5.06) 0.88(0.02) 105 89 57 87.8(1.99) 60.9(4.71) 0.87(0.02)

CMC3

Ours 57 99 15 93.9(1.15) 78.6(5.03) 0.45(0.03) 28 70 14 96.0(1.02) 85.8(3.63) 0.33(0.04)

MV-GLMB 572 137 105 71.2(3.61) 43.8(3.76) 0.86(0.02) 489 55 87 77.6(2.88) 58.0(3.18) 0.85(0.02)

MS-GLMB 315 327 142 72.2(4.94) 38.7(2.59) 0.89(0.01) 181 192 110 82.9(4.63) 55.6(2.65) 0.89(0.01)

CMC4

Ours 0 9 0 97.5(0.29) 98.7(0.16) 0.24(0.00) 0 9 0 97.8(0.00) 98.9(0.00) 0.11(0.00)

MV-GLMB 19 94 3 70.9(4.00) 66.6(3.31) 0.71(0.05) 8 83 4 76.0(3.30) 68.8(3.16) 0.67(0.06)

MS-GLMB 70 103 3 56.2(15.93) 74.6(6.90) 0.66(0.06) 60 92 4 61.1(15.79) 76.9(6.77) 0.62(0.07)

CMC5

Ours 83 328 27 88.1(0.69) 50.9(3.02) 0.87(0.02) 32 277 24 91.0(0.51) 51.9(3.04) 0.86(0.02)

MV-GLMB 601 597 102 65.0(7.06) 24.7(2.47) 0.93(0.01) 411 408 95 75.4(6.73) 31.7(2.60) 0.94(0.01)

MS-GLMB 456 690 155 65.0(6.53) 20.3(3.32) 0.96(0.01) 210 444 144 78.5(5.47) 27.7(4.14) 0.97(0.01)

dataset, we excluded the MT, PT, and ML scores since they give no useful insight given the small number

of objects in the scenes. The poorer performance of the MV-GLMB and MS-GLMB filters arises from

poor track initiation/re-identification and occlusion handling (both filters cannot re-identify tracks, and the

MS-GLMB filter does not account for occlusions). This can be seen from the OSPAp2q error curves in Fig.

6 (the error at time k is computed over the window from the initial time to time k). In CMC1, the error

increases when the cameras are turned off and decreases when the cameras are turned on, indicating correct

re-identifion. In CMC2 and CMC4, although most tracks are correctly re-identified, the error does not

decrease after the cameras are turned on because some tracks are assigned incorrect IDs. In CMC3 and

CMC5, due to the high object density and severe occlusion, the features are unstable. Consequently, only a

small number of tracks are recalled, and hence the OSPAp2q error increase.

Tab. 5 shows the average run-time in FPS (frame per second, on a desktop with an Intel(R) Core(TM)

i7-7700K CPU @ 4.20GHz Processor without any GPU accelerations), for each 3D MV-MOT methods in

the WT and CMC datasets. The proposed filter shows improved processing speed compared to MV-GLMB

[17], and are able to track objects on-line. Although there are only 3 objects in CMC4, the processing time

increases since we also estimate object poses. The run-time on the WT dataset is higher than that on the
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Table 4: Tracking performance (in 3D and ground plane) on the CMC dataset with disappearing-reappearing objects, and
CSTrack detector: MC means and 1 standard deviation (shown in parenthesis, only reported for the main measures). Object
disappearance-reappearance is simulated by turning off all cameras mid-scene for 30 frames. The best result for each sequence
is Bolded

Seq. Tracker
Evaluation with 3D ellipsoid estimates Evaluation with ground plane estimates

FPÓ FNÓ IDsÓ MOTAÒ IDF1Ò OSPA(2)
Ó FPÓ FNÓ IDsÓ MOTAÒ IDF1Ò OSPA(2)

Ó

CMC1

Ours 0 85 0 87.0(0.14) 93.1(0.10) 0.38(0.00) 0 85 0 87.0(0.17) 93.1(0.10) 0.19(0.00)

MV-GLMB 44 92 3 78.6(2.56) 51.2(0.93) 0.93(0.01) 41 89 4 79.5(2.60) 51.2(0.91) 0.91(0.01)

MS-GLMB 25 91 4 81.5(2.08) 51.9(0.69) 0.93(0.00) 23 89 4 82.0(2.00) 51.9(0.68) 0.91(0.01)

CMC2

Ours 48 290 18 82.8(0.58) 74.0(6.01) 0.54(0.04) 13 254 16 86.3(0.7) 80.1(4.37) 0.45(0.05)

MV-GLMB 334 360 75 63.0(3.12) 36.5(2.43) 0.94(0.01) 279 306 64 68.7(2.79) 43.3(2.09) 0.93(0.01)

MS-GLMB 170 445 105 65.3(2.28) 32.8(1.90) 0.95(0.00) 102 377 86 72.7(1.13) 41.0(1.87) 0.95(0.00)

CMC3

Ours 110 446 39 78.9(1.05) 55.4(2.83) 0.69(0.02) 19 355 37 85.4(0.71) 63.0(2.48) 0.64(0.02)

MV-GLMB 556 524 132 57.1(3.20) 37.9(2.88) 0.93(0.01) 428 396 107 67.0(2.77) 44.4(2.37) 0.91(0.01)

MS-GLMB 293 696 153 59.6(3.62) 34.9(2.18) 0.94(0.01) 162 566 126 69.7(2.96) 42.6(2.46) 0.93(0.01)

CMC4

Ours 1 92 1 76.7(0.51) 73.9(3.91) 0.63(0.04) 0 91 1 77.2(0.19) 74.2(3.82) 0.56(0.05)

MV-GLMB 17 201 6 44.2(1.80) 55.7(0.79) 0.86(0.01) 9 193 7 48.1(1.06) 56.7(0.67) 0.84(0.02)

MS-GLMB 37 213 5 36.5(12.69) 50.4(7.10) 0.87(0.02) 29 205 6 40.4(11.17) 52.3(6.52) 0.85(0.02)

CMC5

Ours 89 506 34 83.0(0.39) 39.1(2.41) 0.92(0.01) 29 446 33 86.3(0.34) 40.5(2.31) 0.91(0.01)

MV-GLMB 526 822 106 60.8(7.72) 21.7(3.78) 0.96(0.01) 331 627 99 71.5(7.58) 26.7(3.26) 0.96(0.01)

MS-GLMB 482 955 158 57.0(5.84) 18.1(1.67) 0.97(0.00) 227 701 152 70.9(5.43) 23.7(2.30) 0.98(0.00)

CMC dataset due to the higher number of objects.

Table 5: True number of objects in the sequences and MC means (1 standard deviation is shown in parenthesis) of run-time,
in FPS, for different filters. The ‘˚’ indicate our filter, and the best result for each row is Bolded.

Seq. No. Obj. MV-GLMB MV-GLMB-AB*

WT 24 0.02 (0.18) 0.06(0.01)

CMC1 3 0.62 (1.53) 28.5(0.12)

CMC2 10 0.04 (0.41) 7.0(0.33)

CMC3 15 0.05 (1.51) 4.6(0.11)

CMC4 3 0.07 (0.09) 3.6(0.42)

CMC5 7 0.02 (0.06) 2.7(0.07)

5.1.2. Multi-Camera Reconfiguration

Similar to the MV-GLMB filter, our proposed filter only requires once-off training of the monocular

detectors, allowing seamless operation without any interruption when cameras are added, removed, or repo-

sitioned. To demonstrate this capability, we construct, for each CMC sequence, a scenario involving five

configurations over time, see Fig. 7. The OSPAp2q tracking error is benchmarked against the ideal case

(baseline) where all cameras are on for the entire period in Fig. 7.

In CMC1, the different camera configurations exhibit similar performance to the baseline due to the low

object density (relative to the number of cameras). In CMC2-3, the performance degrades slightly when

fewer cameras are on since it becomes harder to resolve occlusion with higher object density. Although the

object density is low in CMC4, tracking upright and fallen people is more challenging due to the increased

uncertainty. Hence, there is a slight performance degradation relative to the baseline. CMC5 also involves

tracking upright and fallen people, but at a higher object density than CMC4. As a result the baseline
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Figure 6: Track re-identification: OSPAp2q error of the proposed filter with CSTrack detection. Object disappearance-
reappearance in the CMC dataset is simulated by turning off all cameras mid-scene for 30 frames (indicated in yellow).
Tracking errors for MV-GLMB almost saturate at the maximum value. Except in CMC5 where re-identification fails because
the features are not stable, the proposed filter has considerably lower tracking errors at all times.

and the reconfigured scenario tracking errors are similarly high due to the high object density (relative

to the number of cameras). These results demonstrate that the proposed methods can adapt to camera

reconfigurations on-the-fly without sacrificing the tracking performance. More details on tracking results

can be found in the videos in the supplementary materials.

5.2. Benchmarking Against Ideal Trackers

In this study, we benchmark our 3D MV-MOT filter against the best possible track-by-detection perfor-

mance via the combination of an ideal 3D detector with some of the best known (single-sensor) MOT algo-

rithms. For the ideal detector we use the 3DROM detector [67], trained on 90% of the WT dataset3, which is

almost perfect since it is trained directly on the ground truth, and is far better than the CSTrack/FairMOT

3Note that the WT data only provide ground truth in the ground plane, and while it is called 3DROM, this detector only
provides detections in ground plane, not in full 3D.
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Figure 7: Multi-camera reconfiguration: OSPAp2q error of the proposed filter with CSTrack detection. Configuration (1): all
cameras at positions 1, 2, 3, and 4 are on. Configuration (2): three cameras on at positions 2, 3, and 4. Configuration (3):
three cameras on at random positions. Configuration (4): two cameras on at positions 1 and 3. Configuration (5): two cameras
on at positions 2 and 4.

detector used for MV-MOT, see Tab. 6. The baseline single-sensor MOT algorithms include the GLMB

[51], MHT, JPDA, GNN filters [2], and the KSP-ptracker [13] based on the DeepOcclusion detector [16].

However, since the detection is built into the tracker, we cannot evaluate the detection quality of the Deep-

Occlusion detector independently. The results in Tab. 7 show that the gaps in tracking performance are

not as wide as the gaps in detection performance. Keeping in mind that the 3D detection input for the

single-sensor filters are effectively ground truths, it is surprising that the proposed MV-MOT filter shows

comparable performance to some of the ideal filters in certain measures.

Table 6: Detection quality for the WT dataset, ‘˚’ indicates 3D.

Detector MODAÒ MODPÒ RcllÒ PrcnÒ

3DROM* 93.50 75.90 96.20 97.20

FairMOT 28.92 65.46 69.61 63.11

CSTrack 11.67 64.56 70.27 54.53
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Table 7: Tracking performance (in the ground plane) of our filter with CSTrack detections and single-sensor filters with ideal
3D detections, on the WT dataset. The best result for each column is Bolded.

Detector Tracker MTÒ PTÓ MLÓ FPÓ FNÓ IDsÓ MOTAÒ IDF1Ò OSPA(2)
Ó

CSTrack MV-GLMB-AB* 101 134 77 5040 2804 273 14.7(3.37) 50.9(2.11) 0.79(0.01)

FairMOT MV-GLMB-AB* 119 127 66 3399 2463 215 36.1(2.60) 58.4(1.98) 0.73(0.01)

3DROM

GLMB 167 107 39 136 1501 181 81.6 86.4 0.19

MHT 41 125 147 502 4083 266 51.0 50.2 0.31

JPDA 171 85 57 1522 1770 368 63.0 60.1 0.39

GNN 168 82 63 1911 1801 489 57.6 55.4 0.52

DeepOcclusion KSP-ptracker 72 74 25 2007 5830 103 72.2 78.4 0.75

5.3. Ablation Study

5.3.1. Sensitivity to Occlusion Model

In this study, we assess the effect of using object features with various occlusion models, and compare

the two implementations of the adaptive birth model. In particular, we compare the tracking performance of

our occlusion model (IoA), the line-of-sight model (LoS) [17], and the constant detection probability model,

with and without object features on the CMC5 sequence. Tab. 8 indicates that the best performance (in

IDF1 score and OSPA(2) error) is the combined use of object feature and the IoA occlusion model, thereby

demonstrating the benefits of our proposed filter.

Table 8: Tracking performance for different combinations of occlusion models (Occ.) and usage/non-usage of object features
(Feat.): MC means and 1 standard deviation (shown in parenthesis, only reported for the main measures). The best result for
each sequence is Bolded.

Occ. Feat. Evaluation with 3D ellipsoid estimates Evaluation with ground plane estimates

FPÓ FNÓ IDsÓ MOTAÒ IDF1Ò OSPA(2)
Ó FPÓ FNÓ IDsÓ MOTAÒ IDF1Ò OSPA(2)

Ó

IoA
✗ 82 292 34 89.0(0.43)45.5(3.30) 0.92(0.01) 31 240 31 91.8(0.44) 45.9(3.30) 0.91(0.01)

✓ 83 328 27 88.1(0.69) 50.9(3.02) 0.87(0.02) 32 277 24 91.0(0.51) 51.9(3.04) 0.86(0.02)

✓(No Recall) 85 288 34 89.0(0.52) 45.1(2.26) 0.92(0.01) 33 236 30 91.9(0.48)45.5(2.26) 0.91(0.01)

LoS
✗ 88 301 32 88.6(0.53) 46.6(3.13) 0.91(0.01) 36 249 32 91.5(0.45) 47.0(3.14) 0.91(0.01)

✓ 94 331 25 87.9(0.58) 49.0(3.84) 0.87(0.02) 41 278 24 90.8(0.44) 50.2(3.86) 0.86(0.02)

Const.
✗ 55 330 37 88.6(0.43) 41.7(3.44) 0.93(0.01) 23 298 34 90.4(0.43) 42.3(3.34) 0.93(0.01)

✓ 59 356 31 88.0(0.74) 49.7(5.51) 0.88(0.02) 25 322 27 89.9(0.78) 51.2(5.53) 0.87(0.02)

Due to the small difference between the overall tracking performance of the mean-shift clustering (MS)

and Gibbs-Sampling (GS) [54] implementations of the adaptive birth model (of Subsection 4.3.1), to dis-

tinguish them, we need to examine their OSPA(2) error curves (computed as per Figs. 6 and 7). Fig. 8,

indicates that for the WT dataset the MS implementation provides better track initialization than GS with

lower OSPA(2) error at the beginning of the scenario. In the CMC dataset, where the area of interest is

significantly smaller, the two implementations show nearly identical performance.

5.3.2. Best Hypothesis Approximation

In general, reducing the number of components (hypotheses) decreases the computation time, but at the

expense of tracking performance. However, the performance degradation may not be significant in scenarios
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Figure 8: OSPAp2q tracking error (in the ground plane) of our filter with the CSTrack detector. MS: mean-shift clustering
adaptive birth implementation. Gibbs: Gibbs-sampling adaptive birth implementation.

with a high signal-to-noise ratio (SNR), i.e., high detection probability and low false alarms. In this ablation

study, we investigate an extreme case where we only propagate the best hypothesis in the MV-GLMB-AB

filter (see Remark 2) and evaluate the performance of this approximate filter on both the CMC and WT

datasets.

Tab. 9 presents tracking performance comparison for the MV-GLMB-AB filter and its single-hypothesis

approximation. Observe that in the CMC1 and CMC4 sequences, the single-hypothesis MV-GLMB-AB filter

is significantly faster than the MV-GLMB-AB filter without significant tracking performance degradation,

due to the high SNRs. As expected, in other data sequences where the numbers of miss-detections and false

alarms are high, the performance gaps are considerable. Nonetheless, the significant increase in processing

speed renders the single-hypothesis MV-GLMB-AB filter suitable for real-time 3D tracking, especially with

the continual improvement in detection/segmentation techniques.

Note also from Tab. 9 that the single-hypothesis MV-GLMB-AB filter yields significant increases in ID

switches. This is because tracks that are discarded along with the non-optimal hypotheses cannot be recalled
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Table 9: Main evaluation criteria for the best-hypothesis approximation and the standard trackers with CSTrack detections.
Means and one standard deviations (in parenthesis) are reported for the standard tracker. Evaluation on the CMC dataset is
done in 3D, and evaluation on the WT dataset is done in the ground plane. The best result for each sequence is Bolded.

Dataset Tracker FPÓ FNÓ IDsÓ MOTAÒ IDF1Ò OSPA(2)
Ó FPSÒ

CMC1
Single Hypothesis 0 4 0 99.4 99.7 0.30 625.42

Multiple Hypotheses 0 4 0 99.4(0.00) 99.7(0.00) 0.3(0.00) 28.5(0.12)

CMC2
Single Hypothesis 16 301 55 82.1 38.5 0.91 112.34

Multiple Hypotheses 18 36 5 97.1(1.43) 90.2(6.62) 0.41(0.03) 28.5(0.12)

CMC3
Single Hypothesis 78 538 87 75.1 37.6 0.9 72.58

Multiple Hypotheses 57 99 15 93.9(1.15) 78.6(5.03) 0.45(0.03) 7.0(0.33)

CMC4
Single Hypothesis 3 10 1 96.5 86.6 0.5 208.63

Multiple Hypotheses 0 9 0 97.5(0.29) 98.7(0.16) 0.24(0.00) 4.6(0.11)

CMC5
Single Hypothesis 172 919 149 66.6 11.5 0.99 71.35

Multiple Hypotheses 83 328 27 88.1(0.69) 50.9(3.02) 0.87(0.02) 3.6(0.42)

WT
Single Hypothesis 1621 7079 1561 -7.8 7.1 0.99 16.59

Multiple Hypotheses 5040 2804 273 14.7(3.37) 50.9(2.11) 0.79(0.01) 2.7(0.07)

later when evidence supporting their existence accumulates. As a result, the filter incorrectly initiates

new tracks, leading to a high number of ID switches. This can be improved via an ad-hoc scheme that

retains significant tracks from discarded hypotheses and recalls them later when there is sufficient evidence

supporting their existence. Reducing ID switches in a principled manner requires further investigation.

6. Conclusion

We have exploited recent advancements in 2D detection and multi-view fusion to develop a 3D MV-MOT

filter that processes 2D detections from monocular cameras, which avoids expensive 3D object detector

training. The proposed MV-MOT filter integrates automatic track initialization, re-identification, occlusion

handling, and data association into a single Bayesian filtering framework while at the same time taking

advantage of object features to improve efficiency. Performance evaluation on challenging scenarios demon-

strated significant improvements of the proposed filter over existing MV-MOT solutions. Ablation studies

also show its robustness when camera configurations are changed on-the-fly, and the advantages of the

proposed occlusion and adaptive birth models to resolve occlusions and automatically initiates/re-identifies

tracks. To the best of our knowledge, the proposed filter is the first to perform track re-identification in 3D

from 2D detections. Re-identification could be improved using features that are unique to the objects and

time-invariant (or vary slowly with time), which is still an open topic in computer vision.
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