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Abstract—Target Motion Analysis (TMA) requires the online
fusion of multiple hard and soft data sources for target tracking.
This paper proposes a Bayesian filtering solution for multi-
source fusion with hard and soft data. Appropriate models
for various types of hard and soft data are developed so that
they can be fused in a consistent manner under the Bayesian
framework. The resulting Bayes filter is highly non-linear and
non-Gaussian. Hence, a parallel particle filter is developed to
facilitate a user adjustable trade-off between computation time
and tracking accuracy. Numerical studies on realistic scenarios
are also presented.

Index Terms—Target Tracking, Hard Soft Data, Particle Filter,
Multi-sensor Fusion.

I. INTRODUCTION

Using multiple data sources in state estimation reduces
uncertainty and hence, improves estimation accuracy [6], [13],
[14]. For applications such as Target Motion Analysis (TMA) a
single data source typically results in limited observability, and
a comprehensive solution fundamentally requires multiple data
sources [4]. TMA refers to tracking algorithms that use data
derived from passive sensors [4], which can be categorized
as: hard data comprising observations from various arrays
of receivers; or soft data requiring some form of human
interpretation prior to being provided to the TMA operator.
All received hard and soft observations are paired with a
new/existing track before being fed to the TMA subsystem.

In passive underwater TMA, the adverse signal environment
means that hard data alone is not sufficient and soft data
needs to be integrated for better tracking. Further, building
an accurate and timely tactical picture requires the capability
to exploit every possible source of data. For underwater appli-
cations, the TMA process is typically human operator guided,
and requires manual fusion of soft data. However, performing
TMA for a high number of targets within a short time period
can result in high cognitive load for human operators. TMA
is largely a computational process, and many aspects are
naturally amenable to automation that can significantly reduce
human operator workload. The challenge lies in devising a
principled target tracking solution that fuses hard and soft data
in a timely manner.

This paper proposes a Bayesian filtering solution that fuses
hard and soft data for passive underwater TMA. The dynamic
Bayesian estimation framework allows for a recursive or online
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computation of the filtering or posterior density, effectively
encapsulating all modeling and observation information on the
target. Appropriate models for various types of hard and soft
data are developed so that they can be fused in a statistically
consistent manner. The resulting Bayes filter is highly non-
linear and non-Gaussian to which no analytical solutions
exist. As a trade-off between computation time and estimation
accuracy, we developed a parallel particle filter to propagate
the filtering density. Numerical studies and bench-marks on
datasets involving experienced TMA operators are presented.

II. PROBLEM FORMULATION

In this section, we formulate the target tracking problem
from hard and soft data. Typically, the hard data sources are
SONAR bearing and bearing rate, while the soft data sources
involve information regarding speed, bearing, range, angle-
to-bow, and classification from SONAR and/or Optronics
(OPTIX).

A. Bayes Filter

Let xk ∈ X and zk ∈ Z denote, respectively, the state and
observation of the target at time k. It is assumed that the
state space X and observation space Z are finite dimensional.
Hereon, we use the notation ym:n to denote the sequence
ym, ym+1, ..., yn.

In Bayesian filtering we model the state of the target by a
state space model. Specifically, the evolution of the target state
is modeled as a discrete-time Markov process [1], [21]. This
can be described by a Markov transition density fk|k−1(· |· ),
where fk|k−1(xk|xk−1) is the probability density of the state
xk at time k given the state xk−1 at the previous time. In
addition, the observation of the target is described by the
likelihood function gk(· |· ), where gk(zk|xk) is the probability
density of the observation zk given the target state xk.

For target tracking we are interested in the filtering density
πk(·|z1:k), where πk(xk|z1:k) is the probability density of state
xk at time k given the observation history z1:k. Under the
hidden Markov model assumptions, the filtering density can
be computed using the Bayes (filtering) recursion [1], [21]:

πk|k−1(xk|z1:k−1) =

∫
fk|k−1 (xk|ξ)πk−1(ξ|z1:k−1)dξ, (1)

πk(xk|z1:k) =
gk(zk|xk)πk|k−1(xk|z1:k−1)∫
gk(zk|ξ)πk|k−1(ξ|z1:k−1)dξ

. (2)

The filtering density πk(·|z1:k) contains all statistical infor-
mation about the target state at time k given the observation



history z1:k. Optimal estimates of the state can be obtained
from the filtering density via the mean or mode [14].

B. Motion Model

Maritime vessels often follow a fixed course (usually at a
constant speed), but occasionally undergo different maneuvers
such as changes in direction or speed. On the other hand, war-
ships are especially known to maneuver for evading enemies.
To describe both types of motion, we employ a Jump Markov
System (JMS) model [18]–[20], where the state vector contains
a mode variable that corresponds to the motion model of the
target. Specifically, the state vector xk = (ζk,mk) consists of
the kinematics vector ζk and mode mk, with state transition
density of the form

fk|k−1 (xk|xk−1) = f
(mk)
k|k−1 (ζk|ζk−1)ϑ (mk|mk−1) , (3)

where f
(mk)
k|k−1 (· |· ) is the kinematics transition density from

time k − 1 to time k, under model mk, and ϑ (mk|mk−1) is
the probability of switching from mode mk−1 at time k − 1
to mode mk at time k. In this work, the kinematics vector
ζk = (ςk, ωk) consists of the target’s Cartesian coordinates
and velocities ςk = (px,k, ṗx,k, py,k, ṗy,k), and turn rate ωk.

To accommodate target maneuvers, we consider two differ-
ent constant turn models [12] with different noise parameters,
to capture the fixed course mode and turning mode, i.e.,

f
(mk)
k|k−1

(
ςk, ωk|ςk−1, ωk−1

)
= N

(
ωk;ωk−1, σ

2
ω

)
×N (ςk;F (ωk−1, Tk−1) ςk−1, Q(mk, Tk−1)), (4)

where σω is the standard deviation of the turn rate noise, Tk

is the (irregular) sampling interval for time k,

F (ω, T ) =


1 sin(ωT )

ω 0 − (1−cos(ωT ))
ω

0 cos (ωT ) 0 −sin (ωT )

0 (1−cos(ωT ))
ω 1 sin(ωT )

ω
0 sin (ωT ) 0 cos (ωT )

,

Q(m,T ) = v2(m)


T 4

4
T 3

2 0 0
T 3

2 T 2 0 0

0 0 T 4

4
T 3

2

0 0 T 3

2 T 2

,
v(m) =

{
10−5, if m = 1

1, if m = 2
.

Note that the model for fixed course motion has very small
process noise on the position and velocity. On the other hand,
the model with larger process noise is designed to capture
significant changes in velocity. More complex JMS models
can be developed at the expense of computational load, and a
good trade-off is needed.

C. Observation Model

Let (ox, oy) denote the position of the ownship at time-
step k. Table I summarizes the physical features of the state
relevant to the observation models.

In the following, we present the observation likelihood
functions for two typical hard data sources and five soft data

Name Definition
Position P (x) = (px, py)
Velocity V (x) = (ṗx, ṗy)
Speed S(x) = ∥(ṗx, ṗy)∥
Course Γ (x) = arctan

(
ṗx
ṗy

)
Bearing B (x) = arctan

(
px−ox
py−oy

)
Bearing Rate Ḃ (x) =

(py−oy)(ṗx−ȯx)−(px−ox)(ṗy−ȯy)
∥(px,py)−(ox,oy)∥2

Range R (x) = ∥(px, py)− (ox, oy)∥
Range Rate Ṙ (x) =

(px−ox)(ṗx−ȯx)+(py−oy)(ṗy−ȯy)
∥(px,py)−(ox,oy)∥

TABLE I
RELEVANT FUNCTIONS OF STATE VARIABLES

sources in TMA systems. We adopt the standard assump-
tion that, conditional on the target state, observations from
different sources are independent of each other. Hence, the
joint likelihood function at a given time is the product of the
individual likelihoods of the observations received at that time.
For simplicity, the time index k is omitted in this section.

1) Hard SONAR Bearing: Bearing observations (in radians
relative to due North) from SONAR are received roughly at
20s intervals. Let θ denote the received bearing at time k.
Then, its observation likelihood is given by

g(S,B)(θ|x) = N

(
θ;B (x) ,

(
1

3
× π

180

)2
)
. (5)

The bearing noise variance is a nominal value based on
SONAR operator experience.

2) Hard SONAR Bearing Rate: The bearing rate θ̇ (in
radians per second) from SONAR is received at the same time
as the bearing, and its observation likelihood is given by

g(S,BR)(θ̇|x) = N

(
θ̇; Ḃ (x) ,

(
1

60
× π

180

)2
)
. (6)

Again, the noise variance is a nominal value based on SONAR
operator experience.

3) Soft SONAR Speed Information: Let s be the speed
observation (in yards per second) from SONAR, and C be
the vessel class (‘merchant’, ‘warship’, ‘fishing’, or ‘unde-
termined’) reported at time k. Then their joint observation
likelihood is given by

g(S,S)(s, C|x) ∝ N
(
s;S(x),

(
sw(S,S)(C)

)2)
, (7)

where

w(S,S)(C) =

{
0.01, if C = ‘merchant’ or ‘warship’
0.03, otherwise

.

4) Soft OPTIX Range Information: Let r be the range
report (in yards) from OPTIX, and C be the vessel class
reported at time k. Then their joint observation likelihood is
given by

g(O,R)(r, C|x) ∝ N
(
r;R(x),

(
rw(O,R)(C)

)2)
, (8)



where

w(O,R)(C) =

{
0.03, if C = ‘merchant’ or ‘warship’
0.06, otherwise

.

5) Soft OPTIX Bearing Information: The likelihood func-
tion for bearing report β (in radians) from OPTIX is similar
to that for SONAR bearing observation, i.e.

g(O,B)(β|x) = N
(
β;B (x) ,

( π

180

)2)
. (9)

The noise variance is a nominal value based on operator
experience.

6) Soft Angle-to-Bow Information: The Angle-to-Bow
(ATB) or target angle is given by ξ − B(x), where ξ is
the target heading or course, and B(x) is the bearing. In
practice the ATBs reported by humans vary widely between
operators, depending on their experiences. If the observed
target heading falls within 45◦ of the observed bearing (i.e.,
ξ ∈

[
B(x)− π

4 , B(x) + π
4

]
), then the target is said to be

opening (moving away from the ownship) when it has a
positive range rate Ṙ(x). If the observed target heading
falls within 45◦ of the reverse bearing measurement (i.e.,
ξ ∈

[
B(x) + 3π

4 , B(x)− 3π
4

]
), then the target is said to be

closing (moving closer to the ownship) when it has a negative
range rate Ṙ(x). Observed target headings outside these course
ranges are disregarded, because opening or closing events
cannot be determined with reasonable certainty (due to large
variations in human operator expertise). The likelihood of the
OPTIX target heading observation based on the reported ATBs
or closing/opening events is given as follows

g(O,TH)(ξ|x) = (10)
1[0,∞)(Ṙ(x)), if ξ −B(x) ∈

[
−π

4 ,+
π
4

]
1(−∞,0](Ṙ(x)), if ξ −B(x) ∈

[
3π
4 ,− 3π

4

]
1, otherwise

.

This likelihood function effectively restricts the state vector
to regions of the state space with range rates and bearings
that corroborate the observed target heading. Note that regions
outside course ranges have no influence on the distribution of
the target in the Bayes update (2).

7) Soft SONAR/OPTIX Classification Information: Assum-
ing vessel speed is uniformly distributed in pre-defined ranges
for different vessel classes, the likelihood of vessel class based
on speed is given by

g(S,CS)(C|x) =


1[3,9] (S(x)) , if C = ‘merchant’
1[0,15] (S(x)) , if C = ‘warship’
1[0,5] (S(x)) , if C = ‘fishing’
1[0,20] (S(x)) , if C = ‘unclassified’

. (11)

This likelihood function effectively restricts the target state
to regions of the state space with speeds that corroborate the
reported class.

For merchant vessels, the nominal courses cu and cd,
traveling, respectively, up and down an established shipping

lane, are known a priori. A merchant vessel’s course can only
fall within a limited margin of error, e.g. 6π

180 , of the nominal
courses. The likelihood function for vessel class based on
course, given by

g(O,CC)(C|x) = (12){
1[cu− 6π

180 , cu+
6π
180 ]∪[cd−

6π
180 , cd+

6π
180 ]

(Γ(x)), if C = ‘merchant’

1, otherwise
,

restricts the state of a target reported as ‘merchant’ to regions
of the state space that corroborate merchant vessel courses.
Further, the target’s position is restricted to the region SL

defined by the boundaries of the shipping lanes (in TMA,
the boundaries are defined to be approximately 2000 yards
from the closest true shipping lane). The likelihood function
for vessel class based on position is given by

g(O,CP )(C|x) =

{
1SL

(P (x)) , if C = ‘merchant’
1, otherwise

. (13)

Thus, for scenarios with shipping lanes, the overall likelihood
function for SONAR/OPTIX classification data is given by

g(SO,C)(C|x) = g(S,CS)(C|x)g(O,CC)(C|x)g(O,CP )(C|x). (14)

On the other hand, for scenarios without shipping lanes

g(SO,C)(C|x)) = g(S,CS)(C|x). (15)

III. PARTICLE FILTERING

The motion and observation models presented above con-
stitute a highly non-linear non-Gaussian filtering problem, for
which no analytic solution exists. The particle or sequential
Monte Carlo (SMC) method is a class of approximate numer-
ical solutions to the Bayes filter that are applicable to nonlinear
non-Gaussian models [2], [8], [9], [21].

A. Sequential Importance Sampling (SIS)

The basis of the particle method is the use of importance
sampling to approximate the filtering density [2], [8], [9], [21].
More concisely, a weighted point mass approximation to a
(probability) density π, by N i.i.d. samples {x(i)}Ni=1 from a
density p, is given by

π (x) ≈
N∑
i=1

w(i)δx(i) (x) , (16)

where δx(i) (x) denotes a Dirac-delta centered at x(i), and

w(i) =
π
(
x(i)
)
/p
(
x(i)
)∑N

j=1 π
(
x(j)

)
/p
(
x(j)

) . (17)

The density p is usually easy (and inexpensive) to sample
from, and is called a proposal or importance function.

The key operation in particle filtering is the application
of sequential importance sampling (SIS) to recursively ap-
proximate the filtering density. Let {(x(i)

k−1, w
(i)
k−1)}Ni=1, with



∑N
i=1 w

(i)
k−1 = 1, denote the set of N weighted samples

approximating the filtering density at time time k − 1 , i.e.

πk−1 (xk−1|z1:k−1) ≈
N∑
i=1

w
(i)
k−1 δx(i)

k−1

(xk−1). (18)

Suppose that p(· |x(i)
k−1z1:k) is a proposal that we can easily

sample from. Then, upon receiving a new measurement, the
filtering density can be approximated by [2], [8], [9], [21]

πk (xk|z1:k) ≈
N∑
i=1

w
(i)
k δ

x
(i)
k

(xk), (19)

where

x
(i)
k ∼ p(· |x(i)

k−1z1:k), (20)

w
(i)
k ∝ w

(i)
k−1

g(zk|x(i)
k )fk|k−1(x

(i)
k |x(i)

k−1)

p(x
(i)
k |x(i)

k−1, zk)
. (21)

Note that the propagation and weighting steps of the SIS
algorithm are performed independently on each particle, and
thus, are well-suited for parallel execution.

B. Resampling

The basic SIS algorithm, however, suffers from particle
depletion or degeneracy, i.e., after a number of recursions,
nearly all of the particles have negligible weights, which
severely degrades the effectiveness of the approximation. This
problem can be mitigated by resampling the weighted particles
{(x(i)

k , w
(i)
k )}Ni=1 to generate more offspring of particles with

high weights and eliminate those with low weights such that
the expected number of offspring of a particle is proportional
to its weight [2], [5], [9], [10]. Popular resampling strategies
such as stratified sampling, residual sampling and system-
atic sampling, see e.g. [7], involve a comparison of values
drawn from a uniform distribution against the cumulative
sum of particle weights. This operation cannot be performed
independently on each particle, making the resampling non-
parallelizable.

For parallel implementation, we employ the Metropolis
resampler proposed in [11], [17], based on the Metropolis
algorithm for sampling from a given unnormalized probabil-
ity distribution. Our unnormalized probability distribution of
interest is given by the unnormalized weights of the particles.
Given the i-th (weighted) particle, we sample an index j uni-
formly from {1, ..., N}, and assign it to the next iterate of the
Markov chain with probability α(i, j) = min{1, w(j)

k /w
(i)
k },

otherwise the next iterate remains at i. When the Markov chain
converges to the discrete weighted distribution of the particles,
subsequent iterates are unbiased samples. This algorithm only
requires the ratio between pairs of (unnormalized) weights
instead of the cumulative sum of weights, and thus permits
parallel execution. However, the chain only generates unbiased
samples after a certain number iterations. The longer the chain
runs, the smaller the bias. Hence, in practice a compromise is
needed between execution speed and bias.

C. Improving Particle Diversity

Frequent resampling coupled with small process noise could
lead to a rapid loss of particle diversity, resulting in a poor
filtering density approximation. Particle regularization and
Markov chain Monte Carlo (MCMC) move are two main tech-
niques to combat loss of diversity induced by resampling [8].
While regularization is simple to implement, the regularized
particle set is not guaranteed to asymptotically approximate the
filtering density. The MCMC move ensures resulting samples
asymptotically approximate the filtering density.

The idea behind the MCMC move is to generate, from
the resampled particles, a set of N distinct particles that
are still distributed according to the filtering density. This
can be accomplished (in parallel) by feeding each resampled
particle to a Markov chain designed to converge to the filtering
density [21]. If an iterate is already a sample from the filtering
density, then the next iterate of the Markov chain is also
distributed according to the filtering density. In this paper
the MCMC move is implemented with a Metropolis-Hastings
kernel. Specifically, given particle x

(i)
k as the current iterate of

the chain, we sample a state x
(i)∗
k from a proposal distribution

q(· |x(i)
k ) and assign it to the next iterate with probability

α(x
(i)
k , x

(i)∗
k ) = (22)

min

{
1,

g(zk|x(i)∗
k )fk|k−1(x

(i)∗
k |x(i)

k−1)q(x
(i)
k |x(i)∗

k )

g(zk|x(i)
k )fk|k−1(x

(i)
k |x(i)

k−1)q(x
(i)∗
k |x(i)

k )

}
,

otherwise the next iterate remains at x(i)
k . Note that the MCMC

move only requires one iterate of the chain whereas the
Metropolis resampler requires multiple iterates.

D. Implementation details

As alluded to in Section I, all received observations are
paired with a new/existing track. For each newly identified
track (identified at the point of associating a bearing mea-
surement to that track label for the first time) we initialize a
particle filter. The state estimate is taken to be the mean.

The JMS model switching probabilities are chosen to be

ϑ (mk|mk−1) =


0.9, if mk = 1 and mk−1 = 1

0.1, if mk = 2 and mk−1 = 1

0.5, if mk = 1 and mk−1 = 2

0.5, if mk = 2 and mk−1 = 2

. (23)

The particle filter is implemented with proposal

p(x
(i)
k |x(i)

k−1, zk) = f
(m

(i)
k )

k|k−1 (ζ
(i)
k |ζ(i)k−1)ϑ

′
(m

(i)
k |m(i)

k−1), (24)

where ϑ
′
(m

(i)
k |m(i)

k−1) is the mode proposal, which results in
the weight update

w
(i)
k = w

(i)
k−1 g(zk|x

(i)
k )

ϑ(m
(i)
k |m(i)

k−1)

ϑ′(m
(i)
k |m(i)

k−1)
.

Note that the kinematic state of each particle is sampled
from the kinematic transition density but the motion model



is sampled from a discrete distribution given the previous
motion model. For our experiments we set the mode proposal
ϑ

′
(m

(i)
k |m(i)

k−1) = 0.5, i.e., each particle is equally likely to re-
tain its current mode or switch to the new mode. Consequently,
propagating the 500,000 particles forward through each motion
model independently yields a total of 1 million particles.

Resampling is performed after each data update followed
by an MCMC move. Applying traditional resampling on 1
million particles results in a computational bottleneck. This is
alleviated by the Metropolis resampler implemented in CUDA
on the graphics processing unit (GPU) with 1 million parallel
threads. The subsequent MCMC move is also implemented in
CUDA and executed on the GPU with proposal

q(x
(i)∗
k |x(i)

k ) = f
(m

(i)∗
k )

k|k−1 (ζ
(i)∗
k |ζ(i)k−1)ϑ

′
(m

(i)∗
k |m(i)

k−1), (25)

which gives an acceptance probability of

α(x
(i)
k , x

(i)∗
k ) = min

1,

g(zk|x(i)∗
k )

ϑ
(
m

(i)∗
k |m(i)

k−1

)
ϑ′

(
m

(i)∗
k |m(i)

k−1

)
g(zk|x(i)

k )
ϑ
(
m

(i)
k |m(i)

k−1

)
ϑ′

(
m

(i)
k |m(i)

k−1

)

 .

From the resulting 1 million particles, we uniformly draw
500,000 particles to bring the total number of particles back
to the original count.

IV. NUMERICAL EXPERIMENTS

The automated TMA system with the proposed filter is
bench-marked on a dataset involving experienced submariners,
taken from the high integration scenario of the CRUSE exper-
iment (referred to as the Gold Standard dataset) carried out by
the HuFAC Laboratory at the University of Western Australia
[15].

The online tracking performance is measured by the
OSPA(2) distance between the set of estimated tracks and set of
true tracks [3]. This distance, based on the OSPA metric [22],
carries the interpretation of a time-averaged per-track error,
and captures both localization and cardinality errors between
the set of true and estimated tracks, and penalizes switched
tracks or label changes [3]. Our evaluation uses OSPA(2) with
order parameter 1 and cutoff parameter 10,000 yards, over a
sliding window of 120 time-steps.

Parameter Initial Observation Gold Standard dataset
Range SONAR U (2000, 30000)

Range OPTIX

{
U(1000, 10000), if C = ’fishing’
U(2000, 30000),otherwise

Bearing SONAR/OPTIX N
(

initial bearing observation, π2

1802

)
Course SONAR/OPTIX U (0, 2π)
Speed SONAR/OPTIX U (0, 15)

Turn Rate SONAR/OPTIX N
(
0,

(
10−8π
180

)2
)

TABLE II
PARAMETERS FOR FILTER INITIALIZATION IN GOLD STANDARD DATASET.

For each new instance of the filter, the initial 500,000
particles are generated by first sampling the range, bearing,

course, speed and turn rate from the densities given in Table
II. These values are then used to derive the positions and
velocities of the particles, shown in Fig 1. All 500,000 particles
are initialized with motion model 1 (smaller noise). Once
initiated, bearing observations are received at roughly 20-
second intervals.

Fig. 1. Gold Standard dataset initial particle distribution (yellow) for a track
with a 33◦ initial bearing (red).

Movemements of ownship and 14 other vessels during
the 60-minute duration of the Gold Standard scenario are
shown in Fig. 2. This scenario is quite challenging due to
several reasons: the ownship performs no maneuvers (i.e.,
less observability); a relatively high number of tracks (for
human operators); a zigging track; no shipping lanes; and
tracks appearing on the scene with more diffused ranges. Fig. 3
shows that the automated TMA system’s OSPA(2) multi-target
tracking error curve stays below that of the experienced human
operators for the most part of the 60-minute duration, keeping
in mind that the latter had access to additional soft data that
has not been integrated into the automated TMA system. This
suggests the potential for automated TMA to assist human
operators with the overall workload.

Note that current TMA systems assume correct data asso-
ciation, which is not the case in practice. For more reliable
operation, the proposed hard-soft data fusion approach can
be extended to address data association uncertainty using the
multi-sensor Generalized Labeled Multi-Bernoulli (GLMB)
filter [24]. Further, given the adverse signal scenario, tracking
performance can be improved by using the multi-scan GLMB
filter [23] to integrate over multiple data frames, see e.g., [16].
Reliability and better tracking performance, however, come at
the expense of increased computational resources.



Fig. 2. Gold Standard scenario movements of 14 vessels and ownship (blue).
Merchant vessels move unrestricted as there are no defined shipping lanes.
Ownship moves at constant velocity on a 321◦-course with no maneuvers.

Fig. 3. Gold Standard high resolution scenario multi-target tracking errors.

V. CONCLUSIONS

This paper has demonstrated the feasibility of hard and soft
data fusion for TMA with promising experimental results. In
all experimental settings, track initialization for the automated
system used very conservative or very diffuse settings. The
prototype implementation, with unoptimized software on stan-
dard commercial-off-the-shelf hardware, has a typical process-
ing times of several hundred milliseconds per track and per
frame of data. At the scenario peak involving up to 14 tracks,
the system had at most several seconds processing delay.
These experimental results suggest significant potential for an

automated TMA system to assist the crew in reducing their
overall workload and improving overall situational awareness.
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