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Abstract

This paper proposes a filter for joint detection and tracking of a single target using measurements
from multiple sensors under the presence of detection uncertainty and clutter. To capture the target
presence/absence in the surveillance region as well as its kinematic state, we represent the target state
as a set that can take on either the empty set or a singleton. The uncertainty in such a set is modeled by
a Bernoulli random finite set (RFS), and Bayes optimal estimators for joint detection and tracking are
presented. A closed form solution for the linear-Gaussian model is derived and an analytic implementation
is proposed for non-linear models based on the unscented transform. We apply the technique to tracking

targets constrained to move on roads with TDOA/FDOA measurements.
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I. INTRODUCTION

In surveillance applications, the target of interest may not always be present in the surveillance region.
A target can enter and exit the surveillance region at random instances. Moreover, due to background
clutter, exact knowledge of target existence in the surveillance area cannot be assumed. A filter that does
not account for existence of targets may follow spurious measurements when the target is not in the
scene, and when the target enters the scene the tracker may not be able to lock-on to the target. Thus,

it is crucial that the filter detects the presence of the target as well as tracking it.

This paper considers the problem of joint detection and tracking of a single target using measurements
from multiple sensors under the presence of detection uncertainty and clutter. The use of multiple sensors
can, in principle, reduce uncertainty about the target existence as well as its states. However, in the
presence of clutter, multiple sensors also introduce ghost targets for certain measurement types such as
direction of arrival (DOA), time difference of arrival (TDOA), frequency difference of arrival (FDOA) etc.
The ghost target problem becomes increasingly worse with each additional sensor. Traditional solutions
have mostly been based on multiple hypothesis tracking (MHT) techniques, for theoretical foundations
see [2], [3], [10] and the references therein, while for applications and developments see for example the
references [7], [8], [11] amongst the many in the literature.

Using Finite Set Statistics (FISST), we propose a novel and Bayes optimal solution, to the multi-
sensor (single-target) joint detection and tracking problem in the presence of detection uncertainty and
clutter, which in turn solves the ghost target problem. FISST is a set of tools developed from random
finite set (RFS) or point process theory for filtering/estimation problems involving finite sets [16],
[18]. This approach has lead to advances in multi-target tracking methodology, notably the Probability
Hypothesis Density (PHD) filters [16], [17], which attracted substantial interest in recent years. Particle
implementations [34] [29], [39], and Gaussian mixture implementations [35], [36] of the PHD filters
have inspired a host of applications and extensions e.g. [31], [4], [12], [14], [23], [24], [25], [33]. Novel
and physically intuitive interpretations have also been proposed in [9]. In the single-target realm, RFS
or FISST-based single-target multi-sensor tracking has been shown to be Bayes optimal under a very
general setting, as well as exhibiting favorable performance [37]. The technique proposed in this paper
generalizes that of [37] to perform joint detection and tracking.

To capture the target presence/absence in the surveillance region as well as its kinematic state, we
represent the target state as a set that can take on either the empty set or a singleton. The uncertainty in

such a set is modelled by a Bernoulli random finite set (RFS). Detection uncertainty and clutter in the



measurements are modelled by the superposition of Bernoulli RFSs and Poisson RFSs as described in
[37]. Using RFS models, the joint detection and tracking problem can be posed as a Bayes optimal filtering
problem with finite-set-valued states and observations. A closed form solution for the linear-Gaussian
model is presented along with an extension to non linear models via the unscented transform. We apply
the technique to tracking targets constrained to move on roads with TDOA/FDOA measurements from
multiple platforms.

The Bernoulli filter has been suggested for joint detection and tracking in [38] and is similar to the JoTT
filter proposed in [18] (see Section 14.7). This work is the first to present a more complete study with
implementations and applications. Note also that the Bernoulli filter reduces to the IPDA filter [19] under
uniform sensor field of view, uniform clutter, and the merging the Gaussian mixture posterior density into
a single Gaussian component assumptions. The Bernoulli filter is consequently more general, optimally
handles state-dependent sensor field of view and non uniform clutter, and is derived from a principled
top-down approach. The linear Gaussian implementation also coincides with single target MHT when
gating of measurements and pruning/merging of hypotheses is performed.

The paper is organized as follows. In Section II, we state notations and summarize the pertinent
background material for this paper. This section briefly reviews the classical notions of optimal filtering
and Bayes optimality, followed by the basics of RFS theory, and finally RFS based single target tracking
or filtering (with multiple sensors) in the presence of detection uncertainty and false alarms, complete
with a statement of its Bayes optimality. Section III presents the main contribution of this paper, which
builds on the background material in Section II, and generalizes the work in [37], to develop a novel
joint detection and tracking filter, and finally to establish its Bayes optimality. Section IV then presents
a closed-form solution to this filter under standard linear Gaussian assumptions. Section V subsequently
describes a Gaussian mixture implementation applicable to non-linear non-Gaussian models, which is
applied, in VI, to a problem where TDOA/FDOA measurements are received by a moving platform
consisting of pairs of physical receivers, and where targets are constrained to moving on a network of

roads.

II. BACKGROUND

This section outlines the elements of Bayesian optimal (single) target tracking with multiple sensors
that can accommodate clutter (or false alarms), and state dependent sensor field of view (or probability
of detection). We first review the simpler problem of tracking with perfect detection and no false

measurements in subsection II-A and then move on to the more realistic problem of optimal Bayes



tracking in the presence of detection uncertainty and clutter in subsections II-B and II-C

A. Classical Optimal Filtering

In many dynamic state estimation problems, the state is assumed to follow a Markov process on the
state space X C R"=, with transition density fi;—1(:|-), i.e. given a state z;_1 at time k — 1, the

probability density of a transition to the state x; at time k is

Treje—1(Tr]TR-1)- €]

For notational simplicity, random variables and their realizations are not distinguished. The Markov
process described by the transition (1) is partially observed in the observation space Z C R"+, via a
sensor, as modelled by the likelihood function gi(-|-), i.e. given a state xj at time k, the probability

density of receiving the observation z; € Z is

gk (2k|T). (2)

In tracking or filtering we are interested in the probability density of the state xj, at time k given all

observations z1.; = (z1,...,2x) up to time k, denoted by

pr(xk|21:), 3)

This conditional probability density, at time k, is the so-called posterior density (or filtering density).

From an initial density po(-), the posterior density at time k can be computed using the Bayes recursion

P (@hlz11) = / Fotpor (@) (21001 ), 4

I (.’IJ ’Z ): gk(zk|xk)pk\k—1(ajk|Z1:k—1) (5)
FR I 9k (21l ) pgj—1 (@) 21:0—1 ) d

Using multiple sensors can reduce uncertainty about the state and hence improve the state estimate. This
can be seen from Figure 1 which illustrates an application with direction of arrival (DOA) measurements.
With one sensor (see Figure 1.a), the uncertainty is spread along the DOA. However, with two sensors

(Figure 1.b) the uncertainty is reduced by the intersection of the DOAs.
[Fig. 1 about here.]

Suppose that there are S mutually independent sensors, i.e. the product of the individual likelihoods

for each sensor is the joint likelihood for all sensors. Let zlgl), z,(f), ey z,is) denote measurements, with

individual likelihoods gl(gl)(z,(cl)]:vk), gliQ)(z,52)|xk),...,g,(gs)(zlis)uk), from sensors 1 to S respectively,



and define the augmented measurement zj, = (z,gl),z,gz), ...,z,gs)). Since the sensors are independent

conditional on g, the combined likelihood accounting for all sensor measurements is

gr(zk|zr) = H gk |95k
Using the Bayes update (5) with the above likelihood function, the multiple sensor update becomes

I 191(:( (S)ka)pmk—l(xklzhkq)
st 19k Z]:)‘x)pk|k—1(x‘zl:k71)dx

Bayes optimality: A Bayes optimal estimator at time k is any mapping & : z1.; — 2(z1.x) that minimizes

(6)

pr(xk|21:k) =

the Bayes risk [27],
R(z) = E[C(z,%(21.k))] (7

where C(x,Z(z1.;)) is the penalty assigned to an estimate #(z1.;) when the true state is x, and E is
the expectation, taken with respect to py(zg, 21.1), the joint distribution of the current state xj, and the
measurement history z;.;. The Bayes risk R(&) of an estimator Z can be thought of as the expected
penalty for incorrect estimation over all realizations of the state and measurement history. It is well-
known in estimation theory that the conditional mean (with respect to the posterior density) is a Bayes
optimal estimator corresponding to the penalty C(z,y) = ||z — ?/H2

It can be shown from the Bayes recursion (4)-(5), that

:///C(xk>fﬁ(21:k))gk(2k|$k)2?kk—1($k|21:k—1)P1:k—1(dzlzk—l)ditkdzk-

where Pj.;_1 denotes the distribution of the measurement history up to time k£ — 1. The presence of the
probability density gx(zx|zy), indicates that the notion of Bayes risk and subsequently, optimality, rest

on a well-defined notion of probability density and integration on the measurement space.

B. Detection Uncertainty and Clutter

In practice, the sensor may not detect the measurement generated by the target. In addition, the sensor
receives a set of spurious false measurements. At each sampling instant, the sensor effectively receives
an unordered finite set of measurements Z; C Z, and it is not known which of these measurements (if
any) is from the target [1], [2], [18].

Since the observations are finite sets, the concept of a random finite set is necessary to cast the
tracking problem in the Bayesian framework. In essence, a random finite set (RFS) is simply a finite-set-
valued random variable. An RFS can be specified by a discrete probability distribution that describes the

cardinality (number of points) of the set and a family of joint distributions that describes the distribution



of the values of the points. Detailed treatments of RFSs in the context of target tracking can be found
in [18], [38]. In the following we outline some elementary tools for RFSs.

1) Belief Density: Let X be an RFS on X C R”, with cardinality denoted by | X|, then X is a random
variable taking values in, F(X'), the space of finite subsets of X. Since, the space F(X) does not inherit
the usual Euclidean notion of integration and density, the Bayes update (5) is not directly applicable. To
develop the notion of integration and probability density for RFSs, we need to invoke measure theoretic
arguments. Fortunately Mahler’s FISST provides a suitable notion of integration and density that can be
applied to our problems without recourse to measure theory.

FISST provides an alternative notion of probability for an RFS X via the belief functional (3, defined
by

B(S)=P(X C5) 8)

for all closed S C X', where P(£) denotes probability of the event £ [18]. For the modelling of multi-
target systems, the belief functional is more convenient than the probability distribution, since the former
deals with closed subsets of X whereas the latter deals with subsets of F(X). The belief functional can
be considered as the RFS analogue to the concept of a cumulative distribution function for vector valued
random variables. Using the FISST notion of integration and density, the belief density m of an RFS

satisfies for any closed S C X
B(S) = / T(X)5X
Xxcs

where the set integral is defined by

— 1
/XCSTI'(X)(sX = gz'/&ﬂ{xl”%})dml dx, (9)

with S° denoting the ith Cartesian product of S. The belief density can similarly be considered as the
RFS analogue to the concept of the density function for vector valued random variables. The FISST belief
density 7 of an RFS can also be obtained by taking the FISST set derivative of the belief functional 3 (see
[18] for details). It turns out that the FISST density 7 is equivalent to the measure theoretic probability
density [34]. Subsequently, in this work we do not distinguish between the FISST belief density and the
probability density.

2) PHD: The intensity function of an RFS X on X, also known in tracking as the Probability
Hypothesis Density (PHD), is a non-negative function v on X such that for each region S C X [6],
[30]

E[X N S| = /Sv(x)daf, (10)



where | X | denotes the cardinality (number of elements) of X. In other words, the integral of v over any
region S gives the expected number of elements of X that are in S. The local maxima of the PHD v
are points in X with the highest local concentration of expected number of elements, and can be used
to generate estimates for the elements of X. The PHD or intensity function is the first-order statistical
moment of an RFS, analogous to the concept of an expectation for vector valued random variables.

3) Poisson RFS: An RFS X on X is said to be Poisson with a given intensity function v (defined on
X) if its cardinality is Poisson distributed with mean (v, 1), and for any given cardinality, the elements z
of X are independently and identically distributed (i.i.d.) according to the probability density v(-)/ (v, 1)
[6], [30], where (v, h) = [v(z)h(z)dx is the standard notation for the inner product. A Poisson RFS is
completely characterized by its intensity function, also known in the tracking literature as the Probability
Hypothesis Density (PHD).The probability density of a Poisson RFS can also be explicitly expressed in

terms of v:

where

zeX

Poisson RFSs are useful in modelling births of new targets as well as false measurements or clutter.

4) Bernoulli RFS: A Bernoulli RFS on X has probability 1 — r of being empty, and probability r
of being a singleton whose (only) element is distributed according to a probability density p (defined
on X). The cardinality distribution of a Bernoulli RFS is a Bernoulli distribution with parameter r. The
probability density of a Bernoulli RFS is

1—7r X =0,
©(X)=¢ r-plz) X ={z}, a1
0 otherwise.

Bernoulli RFSs are useful in modelling detection uncertainty.

C. Filtering in Detection Uncertainty and Clutter

Suppose at time k that the target is in state xp. The measurement process is given by the RFS
measurement equation

Zy = Oy (x1) U Ky, (12)

where Oy, () is the RFS of the target-generated measurement, and K, is the RFS of clutter. It is assumed

that conditional on xy, O (zx), and K}, are independent RFSs. The spurious set of measurements or



clutter is modelled as a Poisson RFS with intensity «;, while the target generated measurement Oy, (xy)
is modelled as a Bernoulli RFS with parameters {ppx(xk) , gk (-|zk)}, Where pp i (x1) is the probability
of detection, and gy, (z|zx) is the likelihood of the target generated measurement z.

The probability density of the measurement Zj, is given by [18], [37].

(1—-ppi(z)) I{gk +ppk () 3 gr(z ‘x) —{=}

i (Zilz) = e ia— (13)
[ kl

As a function of Zi, the likelihood (13) is a true probability density (up to a scaling constant that cancels
the unit of measurement) on F(Z) in a measure theoretic context [37]. Subsequently, Bayes rule applies

and the update equation is

N (Z21) Pejio—1 (Tk| Z1:6-1)
(i (Zk)), prj—1 (1 Z10-1) )

In the presence of detection uncertainty and clutter, the advantage of using multiple sensors is no

pr(xk|Z1) = (14)

longer obvious as illustrated by Figure 2. Contrary to the clutter-free case (see Figure 1.b) in which the
target can be located by the intersection of the DOAs, the intersection of cluttered DOAs from the two

sensors results in many ghost targets.
[Fig. 2 about here.]

Let Z,gl), Zy (2) (S) denote measurements with individual likelihoods 77,(61)( (1)|l‘k) (2)(Z,i2)| k)
-y 77( )(Z(S |xk) from sensors 1 to S, respectively, and define the augmented measurement Zj, =
(Z,gl),Z( ), ...,ZIES)). Since the sensors are independent conditional on xj, the combined likelihood

accounting for all sensor measurements is

e (Z|wx) = H 0 (247 |x). (15)
and the multiple sensor update can be written as

Hf:1g,(f)( (S)|$k)pk\k—1($k|lek—1)
<H§ 177ks (Z 8)\ )5 pk|k—1("Zl:k71)>

To gain an intuition for how the multi-sensor Bayes filter (4)-(16) addresses the ghost target problem,

Pe(2k|Z1:k) = (16)

consider the multi-sensor DOA measurements depicted in Figure 2. Assuming a uniform prior, after the
measurement update from the 1st sensor, the probability masses representing uncertainty in the target are
spread out along the DOAs. After the update from the 2nd sensor, the uncertainty in the target contracts

into modes near the intersections of the DOAs. Since the prior is uniform, the modes of the posterior



will have similar heights, and it is not possible to distinguish which mode corresponds to the target. The
prediction then propagates the modes of the posterior forward in accordance with the target dynamics.
At the next time step, the product of the likelihoods, i.e. the joint likelihood, also has several modes
due to clutter. However, only the mode that corresponds to the target is corroborated by the prediction.
The modes that correspond to (the intersection of) clutter returns do not follow the dynamical model and
hence are not supported by the prediction. The event that the intersections of the clutter DOAs following
the target dynamic is extremely rare. Consequently, after the update step, which multiplies the prediction
density with the joint likelihood, the mode that corresponds to the target will have a high weight because
it is reinforced by the prediction, whereas the modes that correspond to clutter will diminish. Hence,
after several time steps, the mode that corresponds to the target emerges and the modes that correspond
to clutter die out.

Bayes optimality: Since the measurement likelihoods (13) and (15) are probability densities in the

finite-set-valued measurement, using the FISST set integral, the Bayes risk is given by
R(2) = E[C(x,#(Z1.1))] (17
= ///C(m,f(lek))gk(Zklﬂi)pmk1(37|Zl:k—1)P1;k—1(dZ1;k—1)dl’5Zk- (18)

This is a mathematically well-defined quantity. Hence, it follows that the conditional mean (with respect
to the posterior probability density) computed via the single-sensor or multi-sensor update (16) is Bayes
optimal.

Bayes optimality of traditional methods for tracking in clutter such as multiple hypothesis tracking
(MHT) and probabilistic data association (PDA) have not been established. Moreover, their complexity
does not scale gracefully with the number of sensors. Multi-sensor MHT is generally computationally
intensive and the multi-sensor PDA (MSPDA) filter is more popular. While MSPDA is less expensive than
MHT, it is still computationally demanding because this approach requires filtering with an augmented

measurement set formed by the Cartesian product of measurement sets from all sensors [20].

III. JOINT DETECTION AND ESTIMATION

In a number of practical applications, especially passive sensing, we cannot assume that the target to
be tracked is always in the scene. A target can enter and exit the surveillance region at random instances.
A tracker that does not account for existence of targets may follow spurious measurements when the
target is not in the scene, and when the real target enters the scene the tracker may not be able to lock-on

to the target. In addition, missed detections may also be encountered as a result of disturbances, sensor



imperfections, and even non communicative targets. It is, therefore, important to consider techniques that
can jointly detect and track a target.

In this section, we propose the Bernoulli filter—an extension of the RFS single-target Bayes recursion to
the more general problem of single-target joint detection and estimation. The Bernoulli filter is presented
in subsection III-A, followed by Bayes optimal estimators for joint detection and tracking in subsection

I1I-B.

A. The Bernoulli Filter

In a joint detection estimation problem, it is assumed that at most one target can be present, and that
the target can be in one of two ‘present’ or ‘absent’ modes. Thus, we model the target state Xy, at time
k, as a Bernoulli RFS with probability density given by

1—rp, X, =0
m(Xk) = repr(ar), Xy = {ax}
0, otherwise
where 7y, is the probability of target existence and pj is the density of the kinematic state of the target.

For the dynamical model, suppose that the state Xj_; at time k — 1 is a Bernoulli RFS. Conditional
upon Xj_; = (), the target can re-enter the scene with probability pr; and occupy kinematic state
x), with probability density fr x(zx), or remain absent from the scene with probability 1 — ppr ;. More

concisely, X}, is the Bernoulli RFS described by

1 — PRk X =10,
Se—1(Xk10) = ¢ prifri(zr), Xi={zk} -
0, otherwise

In addition, conditional upon X1 = {x,_;}, with probability pgj(x,_1) the target can survive to the
next time step and transition to x; with probability density fi(zx|rr—1), or disappear with probability

1 — psk(zk—1). In other words X}, is the Bernoulli RFS described by

1 —psi(Tr—1), X, =10,
Se—1(Xel{zr-1}) = § psp(@re—1) frpp—1(@lze—1) X = {ax} -
0, otherwise

For the measurement model, suppose that the state X, at time % is a Bernoulli RFS. Conditional upon
Xj = {x}, the measurements follow the model previously stated in (12) and the likelihood of receiving

the measurement Z;, from state xy, is 7, (Zi|zx) defined in (13). Moreover, conditional upon X = (), all
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1’“’“>/ﬁ}£k where

measurements must originate from clutter and 7, reduces to K, and the likelihood is e~ ¢
ki(+) is the intensity of the clutter RFS Kj. Hence, the likelihood of the measurement set Zj, at time k
is
e*<1’”k>/<af’“, X.=0
Vel ZklXk) = me(Zilwg), X ={an} -
0, otherwise
Under these assumptions, an exact recursion for the posterior density can easily be obtained as stated
in the following proposition.
Proposition 1: 1f the posterior density 71 at time k—1 is a Bernoulli given by 731 = {rp—1,p6-1},

then the predicted density 7,1 to time k is also a Bernoulli and is given by 7,1 = {rk‘k,l,pkm,l}

where
Trk—1=PRE(L = 1h1) + "1 (PS> PE—1) 5 (19)
PrRE(1 —11) Th—1
Prjk—1(zk)=————fr1(T1) + {frp—1(zxl) psk()pr—1(-)) - (20)
Tklk—1 Tklk—1

Moreover, the updated density 7, at time k is also a Bernoulli and is given by 7y = {ry, px} where

(i (Zk]), Prj—1(+))
we_“’”"mfk + (1 (Zk]-) s prgp—1 ()

Tklk—1

2D

Tek=

Y

.  e(Zklzk)prjk—1 (k)
P(k)= M (Zie|), prppe—1. () .

Proof: The prediction is obtained by substituting the relevant expressions in Mahler’s multi-target

Bayes prediction:
7Tk|k1(X):/ S (X[ Xp—1) 71 (Xp—1)0 Xg—1

o (X|D) i1 (0) + / Fupa (XH{CH -1 ({ChdC

(I=pra)(1=7—1) + -1 [(1=psr(¢))pr-1(¢)dC, X=0
=9 Pr&(1=71) fRk () + 161 [ frppa(@|Ops(Opra(Q)dC, X = {x} -
0, otherwise

Note that 7y, (0) + fﬂk‘k_l({x})daz = 1, hence my;_ is a Bernoulli density with parameters
Thik—1 = [ Tre ({2} dz and pyp1(2) = w1 ({21)/ [ Tre ({2})dz as stated.
The update is obtained by substituting the relevant expressions in Mahler’s multi-target Bayes update

SN AR AL e
O Ty (2 X ) (X)0X
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Consequently,

(1= rpp_r)e” B0kl Xy =0
Vk(Zk’Xk)ﬂ-kal(Xk) = nk(Zk’x)TMk—lpk\k—l(ﬂf), X = {LE}
0, otherwise

and

/’Yk(Zk|X)7rk|k—1(X)5X =(1- Tk\k—1)€_<1’m’>/€;fk + Trjk—1 /ﬁk(Zk|x)pk|k—1($)d$~

Note that 74(0) + [ mp({z})dx = 1, hence m; is a Bernoulli density with parameters ry =
ST ({z})de and pi(z) = mp({x})/ [ 7 ({z})de as stated. [

Notice that the propagation of the probability of target existence 7 is now coupled to the propagation
of the distribution pj, of the kinematic state.

For multiple sensors, we can apply the Bernoulli update iteratively as follows: Use the measurement
and parameters of sensor 1 to calculate {r,gl),pgcl)} via (21), (22); use p,(:) as the prior, and use the
measurement and parameters of sensor 2 to calculate{r,(f), p,(f)} via (21), (22), and so on until we
exhaust the list of sensors. More concisely, let ngf) (Zlis) |z) denote the likelihood of the measurement set
A ,gs) collected by the sth sensor at time k, given the kinematic state x, and define an update operator

\IJ,(:) on any Bernoulli {r,p} by

o] - L)
BT o (1) <n,§5)(Z,§$)|-),p(')>

[\y,ﬂﬁp} () = <n§f)(Z,§5’ym)p(x)

i (Z01).00))
where the parameters of the sth sensor are denoted by the superscript (s), e.g. /@,(f)(-), pg)k () agl(gs)('I-).

Then, the multi-sensor updated Bernoulli parameters are:
rE = \I/ECS) 0:-:0 \I/](f) o \I/S)T'k‘k_l
s 2 1
pk:\I/](ﬁ)o-uo\I/](ﬁ)o\Il,(C)pMk,l

where o denotes a composition.

B. Bayes Optimal Estimator for Joint Detection and Tracking

In the following, let X denote the state at time k, 7 (:|Z1.;) denote its posterior density, py(-|Z1.x)

denote its posterior cardinality distribution (a Bernoulli distribution with parameter ).
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1) Marginal Multi-Object Estimator: The Marginal Multi-Object (MaM) estimator is defined as a
two-step estimator. First, the cardinality is estimated using a MAP estimate on the posterior cardinality

distribution (the posterior distribution of the number of targets | X|)
= arg sup py(n|Z1.). (23)
n

Second, the states are estimated using a MAP estimate on the posterior density given that n = n (the
posterior density restricted to | X| = n)
XMaM arg sup 7g(X|Z1.k). (24)
X:|X|=h
It has been shown that the MaM estimator is Bayes optimal, however convergence results are not currently
known [18].
2) Joint Multi-Object Estimator: The Joint Multi-Object (JoM) estimator for Bernoulli posterior is

defined as
X

- JoM
X! —‘X“

= argsup Te(X|Z1:1) (25)

where c is a dimensionless constant. It has been shown that the JoM estimator is Bayes optimal, and
is statistically consistent [18], with respect to the Matheron topology and subsequently the Optimal
SubPattern Assignment metric [28]. Additionally, the value of ¢ determines the desired accuracy for the
state estimate and the rate of convergence of the estimator (smaller ¢ provides better accuracy with slower

convergence, and vice-versa).

IV. CLOSED FORM SOLUTION AND GAUSSIAN MIXTURE IMPLEMENTATION

In general, the Bayes recursion does not admit an analytic solution. However, a closed form solution to
this recursion can be derived under linear Gaussian assumptions. Additionally, the problem can be solved
using sequential Monte Carlo techniques. In this section, a closed form solution to the RFS single-target
Bayes recursion (4, 14) is derived for the special class of linear Gaussian single-target models. Hereon,
for notational compactness we drop the dependence on the measurement history in the posterior and

predicted densities, i.e.

pi(zx) = pr(zk| Z1s)

Prfi—1(2x) = Drjp—1 (k] Z1:1-1)
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A. Prediction and Update for Linear Gaussian Model

In addition to linear Gaussian transition and likelihood

frp—1(@|Q) = N (25 Fi—1(, Qr—1), (26)

gr(z|z) = N(2; Hyx, Ry), 7
IR,k

JrRk(z ZwR)k./\/ (z; 373ka ) (28)
=1

the linear Gaussian single-target model assumes a constant sensor field of view, i.e.

psk(T) = Psk

PDk(T) = PD k-
The following propositions establish an exact closed form solution to the recursion (4),(14) for the linear
Gaussian single-target model.

Proposition 2: Under linear Gaussian assumptions, if the posterior density 7;_1 at time k£ — 1 is a

Bernoulli given by 71 = {rg_1,pr—1}, With px_1 being a Gaussian mixture of the form

Jk 1
Pi— 1 Zwk])le mk 1 k 1) (29)
then,
Thlk—1=PRk(1 — Tk—1) + Th_1DS k> (30)
PRl =T 1) Tho1PSk
Rk(l —Tr—1 i i i k—1DPS,k i i i
Prjg—1(z) = I — ngk/\f(x;w%?k,@%?k) 72101(@)1/\[(37 m;(ﬂ)k 17P,£|,)€_1),
klk—1 — Tklk=1 32
(31
where
My = Feami, (32)
P = Qo+ Fea P B (33)

Proposition 3: Under linear Gaussian assumptions, if the predicted density 7y ;_; is a Bernoulli given
bY Thjk—1 = {Tk|k—1>Pklk—1}> With pyp_, being a Gaussian mixture of the form

Jik—1
(4) (4)
Prje—1( Z wk|k N (= mkj\k 1’Pk|]k71)’ (34)



then,

Jrlk—1 .
(L=poi)sf +pox & 2w Fuih_ g7 (2)
= z2€Z), j=1
r Jrjr—1 .
Woreed i Ze (1= pp )il +ppsx 2wt Fud) gl (2)
z2€Z, j=1
Jrjk—1 ;
(= ol pia@) +oop $ 8wl wlh ) GN @ me), PR,
ASYA™
(l_pD,k)’%kk + PDk E E ’% wk\k 1qkj ( )
z€Z, J=1
where
0 (2) = N(znh s S )
(4) (4)
nkj|k 1 Hkmkjwfp
G _ (4) T
Sk|k 1 HkPk‘k 1Hk +Rk,
mi () =mif 4 K =),
(4 _ pl) (4) () 1 (4)
Pk\]k—Pkfk 1 Pk\k 1 [Sk:j\k: i Hpk|k 1
() _ pW) @ -1
Ky _Pk|]k 1Hk [Sk|k T
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(33)

(36)

(37)
(38)
(39)
(40)
(41)

(42)

Proposition 2 provides closed form expressions for computing the existence probability ry ;1 and the

means, covariances and weights of py,_; from those of py_; and ry_;. Proposition 3 then provides

closed form expressions for computing the updated existence probability 7, and the means, covariances

and weights of pj from those of py;_1 and ry,_; when a new measurement arrives. Note also that the

recursion from Propositions 2 and 3 simplifies to the Kalman filter when J_1 =1, pgr =1, 711 =1,

PDk = 1, K = 0 and Zk = {Zk}

B. Multiple Sensor Updates for Linear Gaussian Model

For multiple sensors, we can apply Proposition 3 iteratively as follows: Use the measurement and

(1) (1)

parameters of sensor 1 to calculate p; * via Proposition 2; use p; * as the prior and the measurement and

parameters of sensor 2 to calculate p( )

via Proposition 2, and so on until we exhaust the list of sensors.
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More concisely, denote for each s =1,...,5,
Z ,is) = measurement set from sensor s at time k
pg)k = probability of detection of sensor s at time k,
m,(c ) = Clutter intensity of sensor s at time &
H ,E,S) = measurement matrix of sensor s at time k,
R,(j) = noise covariance of sensor s at time k.

Then the update operator \I/,(:) on any Bernoulli {r,p} with

J
p=3" wN(;mb), PO))
j=1

becomes
s (s) ()_f2 S5
L= 55, 5 S G0 )
s z€2,”
[\p;)r]: 1 () (s) v/ ()\2( ( VAL (.7)
=0~ (e7) 1 (1= A 15 T 5 () A g 2)
’ zez”ﬂ 1
s s SN2 _fs s, s, 5,
(=) pl) +p) & 21< A DG N (e mi ) (), P,
s 2€2,”J
[‘I’é)p](@: (5) v/ (5)\ 7 (8)\ 7() (s.)
(1 — DPp, 1) (K, )47 + Z Z( )2~ wll g™ (2)
where
0"7(2) = Nz 507, @
7,’](:7‘7) H]E:S)m(vj) , (44)
s = gOpi gT 4 R (45)
m,(:’j)(z) = m,(Cj) + K]E,s’j)(z - 771(:7j))’ (46)
pEd) = pO) — pi) g7 g1 () pl) (47)
K’gs,j) _ p) HI@T[S,(;J)]—l, (48)

C. Pruning, Merging and Capping of Gaussians

The number of Gaussian components required to exactly represent the posterior density increases

without bound. In implemementations then, to limit the growth of the number of components with time,
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a standard pruning and merging procedure can be used. This procedure is summarized as follows. If at

time k the posterior density py is given and is of the form
pe(x) = > w! Nz m?, P,
j=1

it is approximated by a pruned and merged version

JII’IELX . . N .
() ~ > o N (@, BY),
j=1

in which components with weights w'? below a threshold T" are discarded, components with means

mg ) within a distance U’ of each other are merged, and only the Jy,,x components with the highest
weights are retained. Specifically, begin by identifying components with weights below a threshold 7"

and pruning/discarding all others:
Li={i=1,.,Ju:wl) > T}

Next, from the remaining components, identify the component with the highest weight and group together

all components within a weighted distance U’ of the highest peak:

C_ (