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Abstract

This paper proposes a filter for joint detection and tracking of a single target using measurements

from multiple sensors under the presence of detection uncertainty and clutter. To capture the target

presence/absence in the surveillance region as well as its kinematic state, we represent the target state

as a set that can take on either the empty set or a singleton. The uncertainty in such a set is modeled by

a Bernoulli random finite set (RFS), and Bayes optimal estimators for joint detection and tracking are

presented. A closed form solution for the linear-Gaussian model is derived and an analytic implementation

is proposed for non-linear models based on the unscented transform. We apply the technique to tracking

targets constrained to move on roads with TDOA/FDOA measurements.
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I. INTRODUCTION

In surveillance applications, the target of interest may not always be present in the surveillance region.

A target can enter and exit the surveillance region at random instances. Moreover, due to background

clutter, exact knowledge of target existence in the surveillance area cannot be assumed. A filter that does

not account for existence of targets may follow spurious measurements when the target is not in the

scene, and when the target enters the scene the tracker may not be able to lock-on to the target. Thus,

it is crucial that the filter detects the presence of the target as well as tracking it.

This paper considers the problem of joint detection and tracking of a single target using measurements

from multiple sensors under the presence of detection uncertainty and clutter. The use of multiple sensors

can, in principle, reduce uncertainty about the target existence as well as its states. However, in the

presence of clutter, multiple sensors also introduce ghost targets for certain measurement types such as

direction of arrival (DOA), time difference of arrival (TDOA), frequency difference of arrival (FDOA) etc.

The ghost target problem becomes increasingly worse with each additional sensor. Traditional solutions

have mostly been based on multiple hypothesis tracking (MHT) techniques, for theoretical foundations

see [2], [3], [10] and the references therein, while for applications and developments see for example the

references [7], [8], [11] amongst the many in the literature.

Using Finite Set Statistics (FISST), we propose a novel and Bayes optimal solution, to the multi-

sensor (single-target) joint detection and tracking problem in the presence of detection uncertainty and

clutter, which in turn solves the ghost target problem. FISST is a set of tools developed from random

finite set (RFS) or point process theory for filtering/estimation problems involving finite sets [16],

[18]. This approach has lead to advances in multi-target tracking methodology, notably the Probability

Hypothesis Density (PHD) filters [16], [17], which attracted substantial interest in recent years. Particle

implementations [34] [29], [39], and Gaussian mixture implementations [35], [36] of the PHD filters

have inspired a host of applications and extensions e.g. [31], [4], [12], [14], [23], [24], [25], [33]. Novel

and physically intuitive interpretations have also been proposed in [9]. In the single-target realm, RFS

or FISST-based single-target multi-sensor tracking has been shown to be Bayes optimal under a very

general setting, as well as exhibiting favorable performance [37]. The technique proposed in this paper

generalizes that of [37] to perform joint detection and tracking.

To capture the target presence/absence in the surveillance region as well as its kinematic state, we

represent the target state as a set that can take on either the empty set or a singleton. The uncertainty in

such a set is modelled by a Bernoulli random finite set (RFS). Detection uncertainty and clutter in the
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measurements are modelled by the superposition of Bernoulli RFSs and Poisson RFSs as described in

[37]. Using RFS models, the joint detection and tracking problem can be posed as a Bayes optimal filtering

problem with finite-set-valued states and observations. A closed form solution for the linear-Gaussian

model is presented along with an extension to non linear models via the unscented transform. We apply

the technique to tracking targets constrained to move on roads with TDOA/FDOA measurements from

multiple platforms.

The Bernoulli filter has been suggested for joint detection and tracking in [38] and is similar to the JoTT

filter proposed in [18] (see Section 14.7). This work is the first to present a more complete study with

implementations and applications. Note also that the Bernoulli filter reduces to the IPDA filter [19] under

uniform sensor field of view, uniform clutter, and the merging the Gaussian mixture posterior density into

a single Gaussian component assumptions. The Bernoulli filter is consequently more general, optimally

handles state-dependent sensor field of view and non uniform clutter, and is derived from a principled

top-down approach. The linear Gaussian implementation also coincides with single target MHT when

gating of measurements and pruning/merging of hypotheses is performed.

The paper is organized as follows. In Section II, we state notations and summarize the pertinent

background material for this paper. This section briefly reviews the classical notions of optimal filtering

and Bayes optimality, followed by the basics of RFS theory, and finally RFS based single target tracking

or filtering (with multiple sensors) in the presence of detection uncertainty and false alarms, complete

with a statement of its Bayes optimality. Section III presents the main contribution of this paper, which

builds on the background material in Section II, and generalizes the work in [37], to develop a novel

joint detection and tracking filter, and finally to establish its Bayes optimality. Section IV then presents

a closed-form solution to this filter under standard linear Gaussian assumptions. Section V subsequently

describes a Gaussian mixture implementation applicable to non-linear non-Gaussian models, which is

applied, in VI, to a problem where TDOA/FDOA measurements are received by a moving platform

consisting of pairs of physical receivers, and where targets are constrained to moving on a network of

roads.

II. BACKGROUND

This section outlines the elements of Bayesian optimal (single) target tracking with multiple sensors

that can accommodate clutter (or false alarms), and state dependent sensor field of view (or probability

of detection). We first review the simpler problem of tracking with perfect detection and no false

measurements in subsection II-A and then move on to the more realistic problem of optimal Bayes
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tracking in the presence of detection uncertainty and clutter in subsections II-B and II-C

A. Classical Optimal Filtering

In many dynamic state estimation problems, the state is assumed to follow a Markov process on the

state space X ⊆ Rnx , with transition density fk|k−1(·|·), i.e. given a state xk−1 at time k − 1, the

probability density of a transition to the state xk at time k is

fk|k−1(xk|xk−1). (1)

For notational simplicity, random variables and their realizations are not distinguished. The Markov

process described by the transition (1) is partially observed in the observation space Z ⊆ Rnz , via a

sensor, as modelled by the likelihood function gk(·|·), i.e. given a state xk at time k, the probability

density of receiving the observation zk ∈ Z is

gk(zk|xk). (2)

In tracking or filtering we are interested in the probability density of the state xk at time k given all

observations z1:k = (z1, . . . , zk) up to time k, denoted by

pk(xk|z1:k), (3)

This conditional probability density, at time k, is the so-called posterior density (or filtering density).

From an initial density p0(·), the posterior density at time k can be computed using the Bayes recursion

pk|k−1(xk|z1:k−1) =
∫

fk|k−1(xk|x)pk−1(x|z1:k−1)dx, (4)

pk(xk|z1:k) =
gk(zk|xk)pk|k−1(xk|z1:k−1)∫
gk(zk|x)pk|k−1(x|z1:k−1)dx

. (5)

Using multiple sensors can reduce uncertainty about the state and hence improve the state estimate. This

can be seen from Figure 1 which illustrates an application with direction of arrival (DOA) measurements.

With one sensor (see Figure 1.a), the uncertainty is spread along the DOA. However, with two sensors

(Figure 1.b) the uncertainty is reduced by the intersection of the DOAs.

[Fig. 1 about here.]

Suppose that there are S mutually independent sensors, i.e. the product of the individual likelihoods

for each sensor is the joint likelihood for all sensors. Let z
(1)
k , z

(2)
k , ..., z

(S)
k denote measurements, with

individual likelihoods g
(1)
k (z(1)

k |xk), g
(2)
k (z(2)

k |xk), ..., g
(S)
k (z(S)

k |xk), from sensors 1 to S respectively,
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and define the augmented measurement zk , (z(1)
k , z

(2)
k , ..., z

(S)
k ). Since the sensors are independent

conditional on xk, the combined likelihood accounting for all sensor measurements is

gk(zk|xk) =
S∏

s=1

g
(s)
k (z(s)

k |xk).

Using the Bayes update (5) with the above likelihood function, the multiple sensor update becomes

pk(xk|z1:k) =

∏S
s=1 g

(s)
k (z(s)

k |xk)pk|k−1(xk|z1:k−1)∫ ∏S
s=1 g

(s)
k (z(s)

k |x)pk|k−1(x|z1:k−1)dx
. (6)

Bayes optimality: A Bayes optimal estimator at time k is any mapping x̂ : z1:k 7→ x̂(z1:k) that minimizes

the Bayes risk [27],

R(x̂) = E [C(x, x̂(z1:k))] (7)

where C(x, x̂(z1:k)) is the penalty assigned to an estimate x̂(z1:k) when the true state is x, and E is

the expectation, taken with respect to pk(xk, z1:k), the joint distribution of the current state xk and the

measurement history z1:k. The Bayes risk R(x̂) of an estimator x̂ can be thought of as the expected

penalty for incorrect estimation over all realizations of the state and measurement history. It is well-

known in estimation theory that the conditional mean (with respect to the posterior density) is a Bayes

optimal estimator corresponding to the penalty C(x, y) = ‖x− y‖2.

It can be shown from the Bayes recursion (4)-(5), that

R(x̂) =
∫ ∫ ∫

C(xk, x̂(z1:k))gk(zk|xk)pk|k−1(xk|z1:k−1)P1:k−1(dz1:k−1)dxkdzk.

where P1:k−1 denotes the distribution of the measurement history up to time k− 1. The presence of the

probability density gk(zk|xk), indicates that the notion of Bayes risk and subsequently, optimality, rest

on a well-defined notion of probability density and integration on the measurement space.

B. Detection Uncertainty and Clutter

In practice, the sensor may not detect the measurement generated by the target. In addition, the sensor

receives a set of spurious false measurements. At each sampling instant, the sensor effectively receives

an unordered finite set of measurements Zk ⊂ Z , and it is not known which of these measurements (if

any) is from the target [1], [2], [18].

Since the observations are finite sets, the concept of a random finite set is necessary to cast the

tracking problem in the Bayesian framework. In essence, a random finite set (RFS) is simply a finite-set-

valued random variable. An RFS can be specified by a discrete probability distribution that describes the

cardinality (number of points) of the set and a family of joint distributions that describes the distribution



5

of the values of the points. Detailed treatments of RFSs in the context of target tracking can be found

in [18], [38]. In the following we outline some elementary tools for RFSs.

1) Belief Density: Let X be an RFS on X ⊆ Rn, with cardinality denoted by |X|, then X is a random

variable taking values in, F(X ), the space of finite subsets of X . Since, the space F(X ) does not inherit

the usual Euclidean notion of integration and density, the Bayes update (5) is not directly applicable. To

develop the notion of integration and probability density for RFSs, we need to invoke measure theoretic

arguments. Fortunately Mahler’s FISST provides a suitable notion of integration and density that can be

applied to our problems without recourse to measure theory.

FISST provides an alternative notion of probability for an RFS X via the belief functional β, defined

by

β(S) = P(X ⊆ S) (8)

for all closed S ⊆ X , where P(E) denotes probability of the event E [18]. For the modelling of multi-

target systems, the belief functional is more convenient than the probability distribution, since the former

deals with closed subsets of X whereas the latter deals with subsets of F(X ). The belief functional can

be considered as the RFS analogue to the concept of a cumulative distribution function for vector valued

random variables. Using the FISST notion of integration and density, the belief density π of an RFS

satisfies for any closed S ⊆ X
β(S) =

∫

X⊆S
π(X)δX

where the set integral is defined by
∫

X⊆S
π(X)δX =

∞∑

i=0

1
i!

∫

Si

π({x1, ..., xi})dx1 · · · dxi. (9)

with Si denoting the ith Cartesian product of S. The belief density can similarly be considered as the

RFS analogue to the concept of the density function for vector valued random variables. The FISST belief

density π of an RFS can also be obtained by taking the FISST set derivative of the belief functional β (see

[18] for details). It turns out that the FISST density π is equivalent to the measure theoretic probability

density [34]. Subsequently, in this work we do not distinguish between the FISST belief density and the

probability density.

2) PHD: The intensity function of an RFS X on X , also known in tracking as the Probability

Hypothesis Density (PHD), is a non-negative function v on X such that for each region S ⊆ X [6],

[30]

E [|X ∩ S|] =
∫

S
v(x)dx, (10)
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where |X| denotes the cardinality (number of elements) of X . In other words, the integral of v over any

region S gives the expected number of elements of X that are in S. The local maxima of the PHD v

are points in X with the highest local concentration of expected number of elements, and can be used

to generate estimates for the elements of X . The PHD or intensity function is the first-order statistical

moment of an RFS, analogous to the concept of an expectation for vector valued random variables.

3) Poisson RFS: An RFS X on X is said to be Poisson with a given intensity function v (defined on

X ) if its cardinality is Poisson distributed with mean 〈v, 1〉, and for any given cardinality, the elements x

of X are independently and identically distributed (i.i.d.) according to the probability density v(·)/ 〈v, 1〉
[6], [30], where 〈v, h〉 =

∫
v(x)h(x)dx is the standard notation for the inner product. A Poisson RFS is

completely characterized by its intensity function, also known in the tracking literature as the Probability

Hypothesis Density (PHD).The probability density of a Poisson RFS can also be explicitly expressed in

terms of v:

π(X) = e−〈v,1〉vX ,

where

vX =
∏

x∈X

v(x).

Poisson RFSs are useful in modelling births of new targets as well as false measurements or clutter.

4) Bernoulli RFS: A Bernoulli RFS on X has probability 1 − r of being empty, and probability r

of being a singleton whose (only) element is distributed according to a probability density p (defined

on X ). The cardinality distribution of a Bernoulli RFS is a Bernoulli distribution with parameter r. The

probability density of a Bernoulli RFS is

π(X) =





1− r

r · p(x)

0

X = ∅,
X = {x},
otherwise.

(11)

Bernoulli RFSs are useful in modelling detection uncertainty.

C. Filtering in Detection Uncertainty and Clutter

Suppose at time k that the target is in state xk. The measurement process is given by the RFS

measurement equation

Zk = Θk (xk) ∪Kk, (12)

where Θk (xk) is the RFS of the target-generated measurement, and Kk is the RFS of clutter. It is assumed

that conditional on xk, Θk (xk), and Kk are independent RFSs. The spurious set of measurements or
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clutter is modelled as a Poisson RFS with intensity κk, while the target generated measurement Θk (xk)

is modelled as a Bernoulli RFS with parameters {pD,k(xk) , gk(·|xk)}, where pD,k (xk) is the probability

of detection, and gk (z|xk) is the likelihood of the target generated measurement z.

The probability density of the measurement Zk is given by [18], [37].

ηk(Zk|x) =
(1− pD,k (x))κZk

k + pD,k (x)
∑

z∈Zk

gk(z|x)κZk−{z}
k

e〈κk,1〉 (13)

As a function of Zk, the likelihood (13) is a true probability density (up to a scaling constant that cancels

the unit of measurement) on F(Z) in a measure theoretic context [37]. Subsequently, Bayes rule applies

and the update equation is

pk(xk|Z1:k) =
ηk(Zk|xk)pk|k−1(xk|Z1:k−1)〈
ηk(Zk|·), pk|k−1(·|Z1:k−1)

〉 . (14)

In the presence of detection uncertainty and clutter, the advantage of using multiple sensors is no

longer obvious as illustrated by Figure 2. Contrary to the clutter-free case (see Figure 1.b) in which the

target can be located by the intersection of the DOAs, the intersection of cluttered DOAs from the two

sensors results in many ghost targets.

[Fig. 2 about here.]

Let Z
(1)
k , Z

(2)
k , ..., Z

(S)
k denote measurements with individual likelihoods η

(1)
k (Z(1)

k |xk), η
(2)
k (Z(2)

k |xk),

... , η
(S)
k (Z(S)

k |xk), from sensors 1 to S, respectively, and define the augmented measurement Zk ,

(Z(1)
k , Z

(2)
k , ..., Z

(S)
k ). Since the sensors are independent conditional on xk, the combined likelihood

accounting for all sensor measurements is

ηk(Zk|xk) =
S∏

s=1

η
(s)
k (Z(s)

k |xk). (15)

and the multiple sensor update can be written as

pk(xk|Z1:k) =

∏S
s=1 g

(s)
k (Z(s)

k |xk)pk|k−1(xk|Z1:k−1)〈∏S
s=1 η

(s)
k (Z(s)

k |·), pk|k−1(·|Z1:k−1)
〉 . (16)

To gain an intuition for how the multi-sensor Bayes filter (4)-(16) addresses the ghost target problem,

consider the multi-sensor DOA measurements depicted in Figure 2. Assuming a uniform prior, after the

measurement update from the 1st sensor, the probability masses representing uncertainty in the target are

spread out along the DOAs. After the update from the 2nd sensor, the uncertainty in the target contracts

into modes near the intersections of the DOAs. Since the prior is uniform, the modes of the posterior
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will have similar heights, and it is not possible to distinguish which mode corresponds to the target. The

prediction then propagates the modes of the posterior forward in accordance with the target dynamics.

At the next time step, the product of the likelihoods, i.e. the joint likelihood, also has several modes

due to clutter. However, only the mode that corresponds to the target is corroborated by the prediction.

The modes that correspond to (the intersection of) clutter returns do not follow the dynamical model and

hence are not supported by the prediction. The event that the intersections of the clutter DOAs following

the target dynamic is extremely rare. Consequently, after the update step, which multiplies the prediction

density with the joint likelihood, the mode that corresponds to the target will have a high weight because

it is reinforced by the prediction, whereas the modes that correspond to clutter will diminish. Hence,

after several time steps, the mode that corresponds to the target emerges and the modes that correspond

to clutter die out.

Bayes optimality: Since the measurement likelihoods (13) and (15) are probability densities in the

finite-set-valued measurement, using the FISST set integral, the Bayes risk is given by

R(x̂) = E [C(x, x̂(Z1:k))] (17)

=
∫ ∫ ∫

C(x, x̂(Z1:k))gk(Zk|x)pk|k−1(x|Z1:k−1)P1:k−1(dZ1:k−1)dxδZk. (18)

This is a mathematically well-defined quantity. Hence, it follows that the conditional mean (with respect

to the posterior probability density) computed via the single-sensor or multi-sensor update (16) is Bayes

optimal.

Bayes optimality of traditional methods for tracking in clutter such as multiple hypothesis tracking

(MHT) and probabilistic data association (PDA) have not been established. Moreover, their complexity

does not scale gracefully with the number of sensors. Multi-sensor MHT is generally computationally

intensive and the multi-sensor PDA (MSPDA) filter is more popular. While MSPDA is less expensive than

MHT, it is still computationally demanding because this approach requires filtering with an augmented

measurement set formed by the Cartesian product of measurement sets from all sensors [20].

III. JOINT DETECTION AND ESTIMATION

In a number of practical applications, especially passive sensing, we cannot assume that the target to

be tracked is always in the scene. A target can enter and exit the surveillance region at random instances.

A tracker that does not account for existence of targets may follow spurious measurements when the

target is not in the scene, and when the real target enters the scene the tracker may not be able to lock-on

to the target. In addition, missed detections may also be encountered as a result of disturbances, sensor
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imperfections, and even non communicative targets. It is, therefore, important to consider techniques that

can jointly detect and track a target.

In this section, we propose the Bernoulli filter–an extension of the RFS single-target Bayes recursion to

the more general problem of single-target joint detection and estimation. The Bernoulli filter is presented

in subsection III-A, followed by Bayes optimal estimators for joint detection and tracking in subsection

III-B.

A. The Bernoulli Filter

In a joint detection estimation problem, it is assumed that at most one target can be present, and that

the target can be in one of two ‘present’ or ‘absent’ modes. Thus, we model the target state Xk, at time

k, as a Bernoulli RFS with probability density given by

πk(Xk) =





1− rk, Xk = ∅
rkpk(xk), Xk = {xk}
0, otherwise

where rk is the probability of target existence and pk is the density of the kinematic state of the target.

For the dynamical model, suppose that the state Xk−1 at time k − 1 is a Bernoulli RFS. Conditional

upon Xk−1 = ∅, the target can re-enter the scene with probability pR,k and occupy kinematic state

xk with probability density fR,k(xk), or remain absent from the scene with probability 1 − pR,k. More

concisely, Xk is the Bernoulli RFS described by

fk|k−1(Xk|∅) =





1− pR,k, Xk = ∅,
pR,kfR,k(xk), Xk = {xk}
0, otherwise

.

In addition, conditional upon Xk−1 = {xk−1}, with probability pS,k(xk−1) the target can survive to the

next time step and transition to xk with probability density fk(xk|xk−1), or disappear with probability

1− pS,k(xk−1). In other words Xk is the Bernoulli RFS described by

fk|k−1(Xk|{xk−1}) =





1− pS,k(xk−1), Xk = ∅,
pS,k(xk−1)fk|k−1(xk|xk−1) Xk = {xk}
0, otherwise

.

For the measurement model, suppose that the state Xk at time k is a Bernoulli RFS. Conditional upon

Xk = {xk}, the measurements follow the model previously stated in (12) and the likelihood of receiving

the measurement Zk from state xk is ηk(Zk|xk) defined in (13). Moreover, conditional upon Xk = ∅, all
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measurements must originate from clutter and Zk reduces to Kk and the likelihood is e−〈1,κk〉κZk

k where

κk(·) is the intensity of the clutter RFS Kk. Hence, the likelihood of the measurement set Zk at time k

is

γk(Zk|Xk) =





e−〈1,κk〉κZk

k , Xk = ∅
ηk(Zk|xk), Xk = {xk}
0, otherwise

.

Under these assumptions, an exact recursion for the posterior density can easily be obtained as stated

in the following proposition.

Proposition 1: If the posterior density πk−1 at time k−1 is a Bernoulli given by πk−1 = {rk−1, pk−1},

then the predicted density πk|k−1 to time k is also a Bernoulli and is given by πk|k−1 = {rk|k−1, pk|k−1}
where

rk|k−1=pR,k(1− rk−1) + rk−1 〈pS,k, pk−1〉 , (19)

pk|k−1(xk)=
pR,k(1− rk−1)

rk|k−1
fR,k(xk) +

rk−1

rk|k−1

〈
fk|k−1(xk|·), pS,k(·)pk−1(·)

〉
. (20)

Moreover, the updated density πk at time k is also a Bernoulli and is given by πk = {rk, pk} where

rk=

〈
ηk(Zk|·), pk|k−1(·)

〉
(1−rk|k−1)

rk|k−1
e−〈1,κk〉κZk

k +
〈
ηk(Zk|·), pk|k−1(·)

〉 , (21)

pk(xk)=
ηk(Zk|xk)pk|k−1(xk)〈
ηk(Zk|·), pk|k−1(·)

〉 . (22)

Proof: The prediction is obtained by substituting the relevant expressions in Mahler’s multi-target

Bayes prediction:

πk|k−1(X)=
∫

fk|k−1(X|Xk−1)πk−1(Xk−1)δXk−1

=fk|k−1(X|∅)πk−1(∅) +
∫

fk|k−1(X|{ζ})πk−1({ζ})dζ

=





(1−pR,k)(1−rk−1) + rk−1

∫
(1−pS,k(ζ))pk−1(ζ)dζ, X = ∅

pR,k(1−rk−1)fR,k(x) + rk−1

∫
fk|k−1(x|ζ)pS,k(ζ)pk−1(ζ)dζ, X = {x}

0, otherwise

.

Note that πk|k−1(∅) +
∫

πk|k−1({x})dx = 1, hence πk|k−1 is a Bernoulli density with parameters

rk|k−1 =
∫

πk|k−1({x})dx and pk|k−1(x) = πk|k−1({x})/
∫

πk|k−1({x})dx as stated.

The update is obtained by substituting the relevant expressions in Mahler’s multi-target Bayes update

πk(Xk) =
γk(Zk|Xk)πk|k−1(X)∫
γk(Zk|X)πk|k−1(X)δX

.
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Consequently,

γk(Zk|Xk)πk|k−1(Xk) =





(1− rk|k−1)e−〈1,κk〉κZk

k , Xk = ∅
ηk(Zk|x)rk|k−1pk|k−1(x), Xk = {x}
0, otherwise

and
∫

γk(Zk|X)πk|k−1(X)δX = (1− rk|k−1)e
−〈1,κk〉κZk

k + rk|k−1

∫
ηk(Zk|x)pk|k−1(x)dx.

Note that πk(∅) +
∫

πk({x})dx = 1, hence πk is a Bernoulli density with parameters rk =
∫

πk|k−1({x})dx and pk(x) = πk({x})/
∫

πk({x})dx as stated.

Notice that the propagation of the probability of target existence rk is now coupled to the propagation

of the distribution pk of the kinematic state.

For multiple sensors, we can apply the Bernoulli update iteratively as follows: Use the measurement

and parameters of sensor 1 to calculate {r(1)
k , p

(1)
k } via (21), (22); use p

(1)
k as the prior, and use the

measurement and parameters of sensor 2 to calculate{r(2)
k , p

(2)
k } via (21), (22), and so on until we

exhaust the list of sensors. More concisely, let η
(s)
k (Z(s)

k |x) denote the likelihood of the measurement set

Z
(s)
k collected by the sth sensor at time k, given the kinematic state x, and define an update operator

Ψ(s)
k on any Bernoulli {r, p} by

[
Ψ(s)

k r
]

=

〈
η

(s)
k (Z(s)

k |·), p(·)
〉

(1−r)
r e−〈1,κ

(s)
k 〉 +

〈
η

(s)
k (Z(s)

k |·), p(·)
〉

[
Ψ(s)

k p
]
(x) =

η
(s)
k (Z(s)

k |x)p(x)〈
η

(s)
k (Z(s)

k |·), p(·)
〉

where the parameters of the sth sensor are denoted by the superscript (s), e.g. κ
(s)
k (·), p(s)

D,k (·) , g
(s)
k (·|·).

Then, the multi-sensor updated Bernoulli parameters are:

rk = Ψ(S)
k ◦ · · · ◦Ψ(2)

k ◦Ψ(1)
k rk|k−1

pk = Ψ(S)
k ◦ · · · ◦Ψ(2)

k ◦Ψ(1)
k pk|k−1

where ◦ denotes a composition.

B. Bayes Optimal Estimator for Joint Detection and Tracking

In the following, let Xk denote the state at time k, πk(·|Z1:k) denote its posterior density, ρk(·|Z1:k)

denote its posterior cardinality distribution (a Bernoulli distribution with parameter rk).
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1) Marginal Multi-Object Estimator: The Marginal Multi-Object (MaM) estimator is defined as a

two-step estimator. First, the cardinality is estimated using a MAP estimate on the posterior cardinality

distribution (the posterior distribution of the number of targets |X|)

n̂ = arg sup
n

ρk(n|Z1:k). (23)

Second, the states are estimated using a MAP estimate on the posterior density given that n = n̂ (the

posterior density restricted to |X| = n̂)

X̂MaM = arg sup
X:|X|=n̂

πk(X|Z1:k). (24)

It has been shown that the MaM estimator is Bayes optimal, however convergence results are not currently

known [18].

2) Joint Multi-Object Estimator: The Joint Multi-Object (JoM) estimator for Bernoulli posterior is

defined as

X̂JoM
c = arg sup

X
πk(X|Z1:k)

c|X|

|X|! . (25)

where c is a dimensionless constant. It has been shown that the JoM estimator is Bayes optimal, and

is statistically consistent [18], with respect to the Matheron topology and subsequently the Optimal

SubPattern Assignment metric [28]. Additionally, the value of c determines the desired accuracy for the

state estimate and the rate of convergence of the estimator (smaller c provides better accuracy with slower

convergence, and vice-versa).

IV. CLOSED FORM SOLUTION AND GAUSSIAN MIXTURE IMPLEMENTATION

In general, the Bayes recursion does not admit an analytic solution. However, a closed form solution to

this recursion can be derived under linear Gaussian assumptions. Additionally, the problem can be solved

using sequential Monte Carlo techniques. In this section, a closed form solution to the RFS single-target

Bayes recursion (4, 14) is derived for the special class of linear Gaussian single-target models. Hereon,

for notational compactness we drop the dependence on the measurement history in the posterior and

predicted densities, i.e.

pk(xk) , pk(xk|Z1:k)

pk|k−1(xk) , pk|k−1(xk|Z1:k−1)
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A. Prediction and Update for Linear Gaussian Model

In addition to linear Gaussian transition and likelihood

fk|k−1(x|ζ) = N (x; Fk−1ζ, Qk−1), (26)

gk(z|x) = N (z; Hkx, Rk), (27)

fR,k(x) =
JR,k∑

i=1

w
(i)
R,kN (x; x(i)

R,k, Q
(i)
R,k) (28)

the linear Gaussian single-target model assumes a constant sensor field of view, i.e.

pS,k(x) = pS,k

pD,k(x) = pD,k.

The following propositions establish an exact closed form solution to the recursion (4),(14) for the linear

Gaussian single-target model.

Proposition 2: Under linear Gaussian assumptions, if the posterior density πk−1 at time k − 1 is a

Bernoulli given by πk−1 = {rk−1, pk−1}, with pk−1 being a Gaussian mixture of the form

pk−1(x) =
Jk−1∑

j=1

w
(j)
k−1N (x;m(j)

k−1, P
(j)
k−1), (29)

then,

rk|k−1=pR,k(1− rk−1) + rk−1pS,k, (30)

pk|k−1(x) =
pR,k(1− rk−1)

rk|k−1

JR,k∑

i=1

w
(i)
R,kN (x;x(i)

R,k, Q
(i)
R,k) +

rk−1pS,k

rk|k−1

Jk−1∑

i=1

w
(i)
k−1N (x; m(i)

k|k−1, P
(i)
k|k−1),

(31)

where

m
(i)
k|k−1 = Fk−1m

(i)
k−1, (32)

P
(i)
k|k−1 = Qk−1 + Fk−1P

(i)
k−1F

T

k−1. (33)

Proposition 3: Under linear Gaussian assumptions, if the predicted density πk|k−1 is a Bernoulli given

by πk|k−1 = {rk|k−1, pk|k−1}, with pk|k−1 being a Gaussian mixture of the form

pk|k−1(x) =
Jk|k−1∑

j=1

w
(j)
k|k−1N (x; m(j)

k|k−1, P
(j)
k|k−1), (34)
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then,

rk=

(1− pD,k)κZk

k + pD,k
∑

z∈Zk

Jk|k−1∑
j=1

κ
Zk−{z}
k w

(j)
k|k−1q

(j)
k (z)

(1−rk|k−1)
rk|k−1

κZk

k + (1− pD,k)κZk

k + pD,k
∑

z∈Zk

Jk|k−1∑
j=1

κ
Zk−{z}
k w

(j)
k|k−1q

(j)
k (z)

(35)

pk(x) =

(1− pD,k)κZk

k pk|k−1(x) + pD,k
∑

z∈Zk

Jk|k−1∑
j=1

κ
Zk−{z}
k w

(j)
k|k−1q

(j)
k (z)N (x;m(j)

k|k(z), P (j)
k|k),

(1− pD,k)κZk

k + pD,k
∑

z∈Zk

Jk|k−1∑
j=1

κ
Zk−{z}
k w

(j)
k|k−1q

(j)
k (z)

(36)

where

q
(j)
k (z) = N (z; η(j)

k|k−1, S
(j)
k|k−1), (37)

η
(j)
k|k−1 = Hkm

(j)
k|k−1, (38)

S
(j)
k|k−1 = HkP

(j)
k|k−1H

T
k + Rk, (39)

m
(j)
k|k(z) = m

(j)
k|k−1 + K

(j)
k (z − η

(j)
k|k−1), (40)

P
(j)
k|k = P

(j)
k|k−1 − P

(j)
k|k−1H

T
k [S(j)

k|k−1]
−1HkP

(j)
k|k−1 (41)

K
(j)
k = P

(j)
k|k−1H

T
k [S(j)

k|k−1]
−1. (42)

Proposition 2 provides closed form expressions for computing the existence probability rk|k−1 and the

means, covariances and weights of pk|k−1 from those of pk−1 and rk−1. Proposition 3 then provides

closed form expressions for computing the updated existence probability rk and the means, covariances

and weights of pk from those of pk|k−1 and rk|k−1 when a new measurement arrives. Note also that the

recursion from Propositions 2 and 3 simplifies to the Kalman filter when Jk−1 = 1, pS,k = 1, rk−1 = 1,

pD,k = 1, κk = 0 and Zk = {zk}.

B. Multiple Sensor Updates for Linear Gaussian Model

For multiple sensors, we can apply Proposition 3 iteratively as follows: Use the measurement and

parameters of sensor 1 to calculate p
(1)
k via Proposition 2; use p

(1)
k as the prior and the measurement and

parameters of sensor 2 to calculate p
(2)
k via Proposition 2, and so on until we exhaust the list of sensors.



15

More concisely, denote for each s = 1, . . . , S,

Z
(s)
k = measurement set from sensor s at time k

p
(s)
D,k = probability of detection of sensor s at time k,

κ
(s)
k = clutter intensity of sensor s at time k

H
(s)
k = measurement matrix of sensor s at time k,

R
(s)
k = noise covariance of sensor s at time k.

Then the update operator Ψ(s)
k on any Bernoulli {r, p} with

p =
J∑

j=1

w(j)N (·; m(j), P (j))

becomes

[
Ψ(s)

k r
]

=

(1− p
(s)
D,k)(κ

(s)
k )Z

(s)
k + p

(s)
D,k

∑
z∈Z

(s)
k

J∑
j=1

(κ(s)
k )Z

(s)
k −{z}w(j)q

(s,j)
k (z)

(1−r)
r e−〈1,κ

(s)
k 〉 + (1− p

(s)
D,k)(κ

(s)
k )Z

(s)
k + p

(s)
D,k

∑
z∈Z

(s)
k

J∑
j=1

(κ(s)
k )Z

(s)
k −{z}w(j)q

(s,j)
k (z)

[
Ψ(s)

k p
]
(x) =

(1− p
(s)
D,k)(κ

(s)
k )Z

(s)
k p(x) + p

(s)
D,k

∑
z∈Z

(s)
k

J∑
j=1

(κ(s)
k )Z

(s)
k −{z}w(j)q

(s,j)
k (z)N (x;m(s,j)

k (z), P (s,j)
k ),

(1− p
(s)
D,k)(κ

(s)
k )Z

(s)
k + p

(s)
D,k

∑
z∈Z

(s)
k

J∑
j=1

(κ(s)
k )Z

(s)
k −{z}w(j)q

(s,j)
k (z)

where

q
(s,j)
k (z) = N (z; η(s,j)

k , S
(s,j)
k ), (43)

η
(s,j)
k = H

(s)
k m(,j), (44)

S
(s,j)
k = H

(s)
k P (j)H

(s)T
k + R

(s)
k , (45)

m
(s,j)
k (z) = m

(j)
k + K

(s,j)
k (z − η

(s,j)
k ), (46)

P
(s,j)
k = P (j) − P (j)H

(s)T
k [S(s,j)

k ]−1H
(s)
k P (j) (47)

K
(s,j)
k = P (j)H

(s)T
k [S(s,j)

k ]−1. (48)

C. Pruning, Merging and Capping of Gaussians

The number of Gaussian components required to exactly represent the posterior density increases

without bound. In implemementations then, to limit the growth of the number of components with time,
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a standard pruning and merging procedure can be used. This procedure is summarized as follows. If at

time k the posterior density pk is given and is of the form

pk(x) =
Jk∑

j=1

w
(j)
k N (x;m(j)

k , P
(j)
k ),

it is approximated by a pruned and merged version

p̂k(x) ≈
Jmax∑

j=1

ŵ
(j)
k N (x; m̂(j)

k , P̂
(j)
k ),

in which components with weights w
(j)
k below a threshold T ′ are discarded, components with means

m
(j)
k within a distance U ′ of each other are merged, and only the Jmax components with the highest

weights are retained. Specifically, begin by identifying components with weights below a threshold T ′

and pruning/discarding all others:

Ik = {i = 1, ..., Jk : w
(i)
k > T ′}.

Next, from the remaining components, identify the component with the highest weight and group together

all components within a weighted distance U ′ of the highest peak:

j = arg max
i∈Ik

w
(i)
k ,

Lk = {i ∈ Ik : (m(i)
k −m

(j)
k )T (P (i)

k )−1(m(i)
k −m

(j)
k ) < U ′}.

Merge the group by replacing it with a single Gaussian given by the weighted average of those in the

group:

ŵ
(`)
k =

∑

i∈Lk

w
(i)
k ,

m̂
(`)
k =

1

ŵ
(`)
k

∑

i∈Lk

w
(i)
k m

(i)
k ,

P̂
(`)
k =

1

ŵ
(`)
k

∑

i∈Lk

w
(i)
k (P (i)

k + (m̂(`)
k −m

(i)
k )(m̂(`)

k −m
(i)
k )T ).

Then, excluding components that have already been merged, repeat the grouping and merging process

until all components have been accounted for. Finally, select the Jmax merged components with the

highest weights, and set {ŵ(`)
k , m̂

(`)
k , P̂

(`)
k } as the pruned and merged approximation to the posterior

density.
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V. NON-LINEAR EXTENSION

This section describes an implementation of the Bernoulli filter for nonlinear models using the

unscented transform. Subsection V-A describes the relevant nonlinear dynamic and measurement model

while subsection V-B describes how the unscented transform is used to approximate the prediction and

update step of the Bernoulli filter. Subsection V-C details how state dependent sensor field of view can

be incorporated into this implementation. Subsection V-D shows how dynamical constraints such as road

map information can be exploited to improve performance.

A. Dynamic and Measurement Models

The unscented Gaussian mixture approximation for tracking a single target proposed in [37] is an

efficient and reliable technique that can address the non-linearity in tracking with road constraints and

non-linear measurements. This approach is applicable to state and measurement transformations of the

form:

xk = fk(xk−1, wk−1),

zk = hk(xk, vk),

where fk and hk are the non-linear transition and measurement functions respectively, and wk−1 and vk

are independent zero-mean Gaussian noise processes with covariance matrices Qk−1 and Rk respectively

(i.e. these replace the original linear Gaussian assumptions in (26) and (27) respectively). The model

considered in this paper is a special case of the above model with additive Gaussian noise:

fk(xk−1, wk) = ψk(xk−1) + Gwk−1,

hk(xk, vk) = ϕk(xk) + vk.

B. Unscented Approximation

Analogous to the UKF, the unscented Gaussian mixture approximation recursion applies the unscented

transform to analytically propagate means and covariances through the (non-linear) transition and

measurement functions ϕk and hk respectively as follows. Given a Gaussian mixture posterior density,

at time k − 1,

pk−1(x) =
Jk−1∑

j=1

w
(j)
k−1N (x;m(j)

k−1, P
(j)
k−1),
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for each mixture component j = 1, ..., Jk−1 of the posterior density pk−1 , use the unscented transform

with mean µ
(j)
k and covariance C

(j)
k given by

µ
(j)
k =

[
m

(j)
k−1 0T 0T

]T
,

C
(j)
k = diag(P (j)

k−1, Qk−1, Rk),

to generate a set of sigma points {y(j,`)
k }L

`=0 and weights {u(j,`)
k }L

`=0. Then, partition the sigma points

into

y
(j,`)
k = [(x(j,`)

k−1)
T , (w(j,`)

k−1)T , (v(j,`)
k )T ]T

for ` = 0, . . . , L and proceed as follows.

1) Unscented Gaussian Mixture Prediction: In the unscented Gaussian mixture prediction, the previous

mixture components are predicted forward via the unscented transform by

• propagating the sigma points through the transition function according to x
(j,`)
k|k−1 =

fk(x
(j,`)
k−1, w

(j,`)
k−1) for ` = 0, . . . , L and

• replacing the original expressions (32)-(33) with the approximations (49)-(50).

As a result, the expressions for the predicted probability of existence and density are the same as those

given in Proposition 2, but with

m
(j)
k|k−1 =

L∑

`=0

u
(j,`)
k x

(j,`)
k|k−1, (49)

P
(j)
k|k−1 =

L∑

`=0

u
(j,`)
k (x(j,`)

k|k−1 −m
(j)
k|k−1)(x

(j,`)
k|k−1 −m

(j)
k|k−1)

T . (50)

2) Unscented Gaussian Mixture Update: In the unscented Gaussian mixture update, the predicted

mixture components are measurement-corrected via the unscented transform. This is achieved by

• propagating the sigma points through the measurement function according to z
(j,`)
k|k−1 =

hk(x
(j,`)
k|k−1, v

(j,`)
k ) for ` = 0, . . . , L,

• replacing the original equations (38)-(39) with the approximations (52)-(53), and

• replacing the originals equations(41)-(42) with the approximations (55)-(56).
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As a result, the expressions for the updated probability of existence and posterior density are the same

as those given in Proposition 3, but with

q
(j)
k (z) = N (z; η(j)

k|k−1, S
(j)
k|k−1), (51)

η
(j)
k|k−1 =

L∑

`=0

u
(j,`)
k z

(j,`)
k|k−1, (52)

S
(j)
k|k−1 =

L∑

`=0

u
(j,`)
k (z(j,`)

k|k−1 − η
(j)
k|k−1)(z

(j,`)
k|k−1 − η

(j)
k|k−1)

T , (53)

m
(j)
k|k(z) = m

(j)
k|k−1 + m

(j)
k|k−1 + K

(j)
k (z − η

(j)
k|k−1), (54)

P
(j)
k|k = P

(j)
k|k−1 −G

(j)
k [S(j)

k ]−1[G(j)
k ]T , (55)

K
(j)
k = G

(j)
k [S(j)

k|k−1]
−1, (56)

G
(j)
k =

L∑

`=0

u
(j,`)
k (x(j,`)

k|k−1 −m
(j)
k|k−1)(z

(j,`)
k|k−1 −m

(j)
k|k−1)

T . (57)

For multiple sensors, we can apply the unscented Gaussian mixture update above iteratively similar to

the procedure described in subsection IV-B.

C. Non-Uniform Sensor Field of View

The Bayes update (14) accommodates state dependent probability of detection pD(x). However, the

unscented Gaussian mixture update assumes a constant probability of detection. While this update can

be extended to handle state dependent probability of detection (see [37]), the computational requirement

increases. More importantly, the updated posterior density becomes a Gaussian mixture with positive and

negative weights, which makes the reduction of components in the Gaussian mixture more complex. In

this work we adopt the simple approach used in [33] to handle state dependent probability of detection.

Consider Bayes update equation (14), which involves [1− pD,k(x)] pk|k−1(x) and

pD,k(x)pk|k−1(x)gk(z|x) where the predicted density is a Gaussian mixture (34). Following [33],

we apply the following approximation

[1− pD,k(x)] pk|k−1(x) ≈
Jk|k−1∑

i=1

[1− PD,k( m
(i)
k|k−1)]w

(i)
k|k−1N (x; m(i)

k|k−1, P
(i)
k|k−1). (58)

Further, noting that, using the unscented Kalman update step outlined in subsection V-B2,

gk(z|x)N (x;m(i)
k|k−1, P

(i)
k|k−1) ≈ q

(i)
k ( z)N (x; m(i)

k|k(z), P (i)
k|k) (59)



20

where q
(i)
k ( z),m(i)

k|k(z), and P
(i)
k|k are given by (51), (54) and (55) respectively. Following [33] we apply

the following approximation

pD,k(x)gk(z|x)pk|k−1(x) ≈
Jk|k−1∑

i=1

pD,k( m
(i)
k|k(z))w(i)

k|k−1q
(i)
k ( z)N (x; m(i)

k|k(z), P (i)
k|k). (60)

Hence,

rk≈

Jk|k−1∑
i=1

(
κZ

k [1− pD,k(m
(i)
k|k−1)]w

(i)
k|k−1 +

∑
z∈Z

κ
Z−{z}
k pD,k(m

(i)
k|k(z))w(i)

k|k−1q
(i)
k (z)

)

(1−rk|k−1)
rk|k−1

κZ
k +

Jk|k−1∑
i=1

(
κZ

k [1− pD,k(m
(i)
k|k−1)]w

(i)
k|k−1 +

∑
z∈Z

κ
Z−{z}
k pD,k(m

(i)
k|k(z))w(i)

k|k−1q
(i)
k (z)

)

(61)

pk(x)≈

Jk|k−1∑
i=1

(
κZ
k [1−pD,k(m

(i)
k|k−1)]w

(i)
k|k−1N(x;m(i)

k|k−1,P
(i)
k|k−1)+

∑
z∈Z

κ
Z−{z}
k pD,k(m

(i)
k|k(z))w(i)

k|k−1q
(i)
k (z)N(x;m(i)

k|k(z),P (i)
k|k )

)

Jk|k−1∑
i=1

(
κZ

k [1− pD,k(m
(i)
k|k−1)]w

(i)
k|k−1 +

∑
z∈Z

κ
Z−{z}
k pD,k(m

(i)
k|k(z))w(i)

k|k−1q
(i)
k (z)

)

(62)

D. Road Constraints

The incorporation of prior information such as road map constraints can improve the accuracy of

the tracking algorithm. In this subsection we adapt the unscented Gaussian mixture filter described in

subsection V to accommodate road map constraints. There exist sophisticated techniques for exploiting

road constraints to improve tracking performance, see for example [32], [15], [21], [33]. Techniques such

as variable structure IMM can be expensive since we have to deal with a large number of Gaussians.

In this work, we use a simple projection approach to illustrate that road map information can be easily

incorporated in the Bernoulli filter.

We first present a model to describe the road map constrained target dynamics. This model is then used

in conjunction with a constant turn motion model and the unscented transform to perform the nonlinear

prediction step that accounts for road map constraints. Experiments are reported to illustrate the difference

in performance of the proposed algorithm between scenarios with and without road map information.

1) Road Model: Roads are described by a list of trapezoidal segments, see Figure 3. A segment

consists of a tuple of 4 points, for example the ith segment in figure 3 consists of the tuple (P1, P2, P3,

P4). The midpoint M12 of the line segment joining P1, P2 and the midpoint M34 of the line segment

joining P3, P4 defines a direction ti on the road which approximates the road direction throughout the

segment. Any curved road can be reasonably approximated by a set of trapezoidal segments using this

approach.
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[Fig. 3 about here.]

2) Motion Model with Road Constraints: The constant turn model (70) allows targets to move over

the entire surveillance region and does not constrain the targets to be on the roads. To incorporate road

constraints into the target dynamics, we need a transition density that models the constant turn dynamic

while having zero (or negligible) mass off the roads. One way of achieving this is to use a transition

density fk|k−1(·|x) with negligible mass off the road while approximating the constant turn model (70)

in some sense. Noting that the transition density for the constant turn model is a Gaussian with mean

ψk(x), we model target dynamics with road constraints by a Gaussian with mean being the projection

of ψk(x) onto the road. The covariance matrix of our Gaussian transition density is chosen to model

uncertainty in the tangential and normal directions to the road. This is explained more precisely below.

Suppose that x is the current state. Let x̃ denote the mean ψk(x) of the next state conditioned on x,

and Si denotes the road segment closest to x̃ in Euclidean distance, or, if desired in the Mahalanobis

distance. Then the projection x̃⊥ of the mean x̃ onto Si consists of position, velocity and turn-rate

components given by

x̃⊥p = Mi + tit
T
i (x̃p −Mi) (63)

x̃⊥v = tit
T
i x̃v (64)

x̃⊥ω = x̃ω (65)

where the subscripts p, v and ω are used to indicate the position, velocity and turn-rate components

of a state respectively, Mi denotes the midpoint of segment Si, and ti denotes the (normalized) tangent

direction of segment Si (see figure 3). The projected vector x̃ is used as the mean of our Gaussian

transition density fk|k−1(·|x).

Since the targets are constrained on the road, the covariance matrix Gdiag(σ2
ẋ, σ2

ẏ, σ
2
ω)GT (see (72))

is no longer adequate for modelling the dynamic noise. The covariance of our Gaussian transition

density fk|k−1(·|x) can be chosen by specifying uncertainties in the tangential and normal directions.

In the tangential direction, the standard deviations for position and velocity uncertainties are σp‖ and

σv‖ respectively. Similarly, in the normal direction the standard deviations for position and velocity

uncertainties are σp⊥ , and σv⊥ . Note that σv⊥ is chosen to be much smaller than σv‖ since we want

to constrain the targets to move along the road. The standard deviation for turn-rate uncertainty is σω.

These model parameters are then converted into the global coordinates to form the covariance matrix,
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P̃ , in accordance to orientation of the road segment Si, as follows

Lp =


cos(φ) − sin(φ)

sin(φ) cos(φ)





σp‖ 0

0 σp⊥


 (66)

Lv =


cos(φ) − sin(φ)

sin(φ) cos(φ)





σv‖ 0

0 σv⊥


 (67)

L =




Lp(1, 1) 0 0 0 0

0 Lv(1, 1) 0 0 0

Lp(2, 1) 0 Lp(2, 2) 0 0

0 Lv(2, 1) 0 Lv(2, 2) 0

0 0 0 0 σω




(68)

P̃ = LLT (69)

where φ = arctan(ti,y/ti,x) denoting the orientation of tangent direction ti, and Lx(i, j) is the (i, j)-th

element of matrix Lx.

3) Prediction with Road Constraints: With the dynamic model proposed above, the unscented Gaussian

mixture filter described in the previous subsection can be applied to track multiple targets from non-

linear measurements with road constraints. Ideally the posterior density pk−1, and the transition density

fk|k−1(·|x) should have zero mass off the road. In this case, the predicted density will also have zero mass

of the road. However, as we are approximating pk−1, and fk|k−1(·|x) by functions that has small, but

non-zero mass, off the road, the predicted density pk|k−1 also has non-zero mass off the road. Moreover,

due to the smoothing property of integration, the prediction tends to smear out the probability density

and as a result the off-road probability mass can be significant. Our strategy is to apply the unscented

Kalman prediction using the constant turn model (70) and then project the resulting density back onto

the road so that the off-road mass is reduced.

When using the road model, the predicted mean of the Gaussian components is projected onto the

closest road segment. In the vicinity of road crossings, multiple projections to each of the link segments

are calculated.

4) Pruning of Off-Road Components: In addition to the Gaussian mixture reduction by pruning and

merging, we can further improve performance by using the road constraints to eliminate off-road Gaussian

components. This can be simply achieved by removing any components that are further away than a given

threshold from the road.



23

VI. EXAMPLES WITH TDOA/FDOA MEASUREMENT

In this section, we apply the proposed technique to jointly detect and track an on road target from

TDOA/FDOA measurements received from several moving platforms. We present studies for tracking

with and without road map information. Subsections VI-A, VI-B, VI-C, detail the nonlinear dynamic

model, the TDOA/FDOA measurement model and scenario settings for this experiment. Subsection VI-D

describes the error metric for performance evaluation. Subsections VI-E, VI-F present the experiment

results for Bernoulli filtering without and with road map information respectively.

A. Constant Turn Dynamic Model

A generic constant-turn model is adopted. A constant-turn model, as opposed to a constant-velocity

model, is expected to enable more accurate tracking on curved roads as well as to better accommodate

sharp turns performed by the target. We consequently model the target state at time k by a 5-D vector

xk = [ px,k, ṗx,k, py,k, ṗy,k, ωk]T , consisting of the x-coordinate, x-velocity, y-coordinate, y-velocity and

turn rate, and whose dynamics is described by the following state transition equation

xk = ψk(xk−1) + Gwk−1 (70)

where

ψk(xk−1)=




1 sin(ωk−1T )
ωk−1

0 cos(ωk−1T )−1
ωk−1

0

0 cos(ωk−1T ) 0 − sin(ωk−1T ) 0

0 1−cos(ωk−1T )
ωk−1

1 − sin(ωk−1T )
ωk−1

0

0 sin(ωk−1T ) 0 cos(ωk−1T ) 0

0 0 0 0 1




xk−1, (71)

G =




T 2

2 0 0

T 0 0

0 T 2

2 0

0 T 0

0 0 T




, (72)

T = 1s is the sampling period, wk−1 = [wẋ,k−1, wẋ,k−1, wω,k−1]
T is a vector of velocities and turn-

rate noise components, which are zero-mean Gaussian with standard deviations σẋ = σẏ = 5m/s and

σω = 6◦/s respectively.
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B. TDOA/FDOA Measurement Model

Estimation is performed with TDOA/FDOA measurements. These measurements are calculated from

the output of a pair of physical receivers which are specifically deployed to monitor target emissions

or reflections. The physical receiver pair can then be treated as a single virtual sensor which gives rise

to a TDOA/FDOA measurements. Consequently, as far as the filtering and estimation is concerned, the

TDOA/FDOA measurements originate from the so called virtual sensor for which a statistical model can

be constructed as follows.

Given a target position pk = (px,k,, py,k,) and target velocity ṗk = (ṗx,k,, ṗy,k,), as well as a pair of

physical sensors with positions s
(1)
k = (s(1)

x,k,, s
(1)
y,k,), s

(2)
k = (s(2)

x,k, s
(2)
y,k) and velocities ṡ

(1)
k = (ṡ(1)

x,k,, ṡ
(1)
y,k,),

ṡ
(2)
k = (ṡ(2)

x,k, ṡ
(2)
y,k) respectively at time k, and a wave carrier frequency fc and propagation speed c for

the sensor signals, then, the observation model for the (pair) physical receivers or (single) virtual sensor

yielding the FDOA and TDOA pair zk is given by

zk = (zk,T , zk,F ) + vk (73)

where

zk,T =
1
c

(∥∥∥pk − s
(1)
k

∥∥∥−
∥∥∥pk − s

(2)
k

∥∥∥
)

,

zk,F =
fc

c




(
pk − s

(1)
k

)
·
(
ṗk − ṡ

(1)
k

)
∥∥∥pk − s

(1)
k

∥∥∥
−

(
pk − s

(2)
k

)
·
(
ṗk − ṡ

(2)
k

)
∥∥∥pk − s

(2)
k

∥∥∥


 ,

vk is zero mean Gaussian noise with covariance Rk = diag([ σ2
τ , σ

2
F ]T ), στ = 10−8s, σF = 1Hz, and

c = 3× 108m/s is the propagation speed for EM waves, · denotes the vector dot product.

Each virtual sensor is modeled as having a state or virtual state, comprising its x-coordinate, x-velocity,

y-coordinate, y-velocity and turn rate. The virtual state of each physical sensor pair is modelled by the

‘midpoint’ of the two physical sensor states. The probability of detection for measurements is dependent

on the sensor state (or virtual state). A Gaussian sensor model dependent only upon position is adopted

as follows. Let sk = (sx,k, sy,k) denote the x and y positions of the sensor state or virtual state at time

k. Then, the probability of detection pD,k(x) of a hypothetical target state x and time k is

pD,k(x) =
PD,max

N (sk; sk, r
2
D,kI2)

N ([px,k, py,k]; sk, r
2
D,kI2), (74)

where PD,max is a constant indicating the maximum probability of detection, and rD,k is a constant

indicating the standard sensor range, i.e. at sk the value of at PD,k(·) is PD,max, and a distance rD,k

from sk the value of PD,k(·) drops to approximately 60% of PD,max. Clutter for the virtual sensor follows
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a uniform spatial distribution and a Poisson cardinality distribution. Two virtual sensors with the following

parameters are considered. For the first virtual sensor, PD,max = 0.95, rD,k = 4000m and the average

rate of clutter is λ = 100 returns per scan. For the second virtual sensor, PD,max = 0.75, rD,k = 4000m

and the average rate of clutter is λ = 10 returns per scan. Clutter for both virtual sensors is uniformly

distributed over the region [−10−5,+10−5]s× [−200, +200]Hz.

The combination of the TDOA and FDOA measurements with multiple virtual sensors is expected to

yield strong tracking performance, despite the low observability of each measurement type individually,

as the information in the measurement can be considered complementary.

C. Scenario Settings

For each example that follows, the following road constraints and target ground truths are used as

indicated in Figure 4. Roads are indicated by thin blue lines. The target track is given by a thick red line

and a large dot indicating the starting position. The target is born at time k = 7 and dies at k = 93. This

is a 2D example involving 4 roads and 4 intersections, with the target traveling from the top right hand

corner downwards along the road and later making a turn at the intersection. Note that all units of time

in this section are given in seconds.

For the measurements, two pairs of physical receivers are deployed, where each pair is used to extract

a TDOA/FDOA pair. Note again that detection and tracking is performed on the basis of TDOA/FDOA

measurement pairs. and that as far as the filtering is concerned, each pair of physical receivers is treated

as a single virtual sensor, which is described by a corresponding statistical model. Thus there are two

virtual sensors. The physical receiver trajectories and target tracks, are shown in the xy plane in Figure

4.

Mixture component pruning is performed with a threshold of T ′ = 10−3, component merging with a

threshold of U ′ = 4m, and a maximum of Jmax = 200 components is enforced. A target state is declared

present by the filter if the estimated existence probability is greater than 0.5, and the actual state estimate

is obtained by extracting the mean of the posterior component with the highest weight.

[Fig. 4 about here.]

D. Miss-Distance

We use the Optimal Sub-Pattern Assignment (OSPA) distance between the estimated and true multi-

target state as the estimation error since it jointly captures differences in cardinality and individual

elements between two finite sets in a mathematically consistent yet intuitively meaningful way [28].
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For joint detection and tracking we only need the OSPA distance between two finite sets with cardinality

of at most one. The construction of the OSPA distance d
(c)
OSPA(X,Y ) between two finite sets X and Y

with cardinality of at most one is as follows. d
(c)
OSPA(∅, ∅) = 0, d

(c)
OSPA({x}, {y}) = min(‖x− y‖ , c),

d
(c)
OSPA({x}, ∅) = d

(c)
OSPA(∅, {x}) = c (500m in our example). The OSPA distance is interpreted as a

per-target error, comprised of a per-target localization error and a per-target cardinality error. The cut-off

parameter c determines the relative weighting of the penalties assigned to cardinality and localization

errors. For further details see [28].

E. Bernoulli Filtering without Road Map Information

This section presents the performance of the single target joint detection and tracking filter without

road map information. Figures 5 and 6 shows the measurements for each virtual sensor against time.

[Fig. 5 about here.]

[Fig. 6 about here.]

The initial prior consists of a zero probability of existence r0 = 0 and a spatial density p0(·) which is

Gaussian with zero mean m0 = [ 0m, 0ms−1, 0m, 0ms−1, 0rads−1 ]T and relatively diffuse covariance

R0 = diag([2000, 2000, 2000, 2000, 0.2]2) (having appropriately squared units). The birth parameters are

given by a reentry probability pR,k = 0.07 and a reentry density fR,k(·) which is a single Gaussian

with an off centre mean mR,k = [ 1800m, 0ms−1, 1700m, 0ms−1, 0rads−1 ]T and relatively diffuse

covariance RR,k = diag([2000, 2000, 2000, 2000, 0.2]2) (having appropriately squared units).

Without road constraints, the filter is completely unable to detect the presence of the target. The

OSPA errors are consequently shown to saturate in Figure 7. The poor performance in this case is not

a demonstration of the failure of the Bernoulli joint detection and tracking filter. It is actually due to

the difficulty of a joint detection and tracking scenario involving TDOA/FDOA measurements, and the

relatively high clutter rate for virtual sensor 1 as well as the relatively low detection probability of virtual

sensor 2.

[Fig. 7 about here.]

F. Bernoulli Filtering with Road Map Information

This section presents experimental results for the joint detection and tracking filter with road map

information. For direct comparison, the previous experiments will be repeated using exactly the same
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data, models and parameters except that the filtering is performed with road constraints, i.e. the dynamical

model is still based upon the constant turn motion equations, but modified to impose road constraints,

and pruning of off-road components is performed after the update step. The parameters for the dynamic

model with road constraints is given in the table below.

Parameters Values

Std. Dev. tangential position σp‖ 50m/s

Std. Dev.. normal position σp⊥ 10m/s

Std. Dev. tangential velocity σv‖ 30m/s

Std. Dev.. normal velocity σv⊥ 15m/s

Std. Dev. projected turn σω̆ 6◦/s

Threshold for off-road pruning 1.7

The initial prior and birth parameters are also kept the same as before. Figure 8 shows the filter output

using only the measurements from the first receiver pair or virtual sensor, while Figure 9 shows the filter

output when the measurements from both receiver pairs or virtual sensors are used. The corresponding

OSPA errors are shown in Figures 10 and 11. It can be seen that performance is much better than

without road information, the true track has been identified and deleted, and when the target is present, it

is tracked very accurately. With only one virtual sensor, track confirmation occurs with a 4s delay while

track termination does not occur before the scenario finishes. With both virtual sensors, the confirmation

and termination of the track both occur with 2s delays respectively.

[Fig. 8 about here.]

[Fig. 9 about here.]

[Fig. 10 about here.]

[Fig. 11 about here.]

As expected, using measurements from both virtual sensors yields better result than a single virtual

sensor. This is verified by Figure 12 which shows the OSPA distance averaged over 100 Monte Carlo

runs.

[Fig. 12 about here.]
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VII. CONCLUSIONS

A Bernoulli filter has been proposed for joint detection and tracking of a single target using

measurements from multiple sensors under the presence of detection uncertainty and clutter. Bayes

optimal estimators for joint detection and tracking have also been established. A closed form solution to

this recursion has been derived under linear Gaussian assumptions. Moreover, an analytic implementation

for non-linear non-Gaussian models has been proposed. The technique has been successfully applied to

joint detection and tracking problem with road constraints and multiple sensors yielding TDOA/FDOA

measurements. The main difficulties encountered were the presence of ghost targets due to the use of

multiple sensors, and the inability to initiate tracks due to the high clutter and/or low detection rate of the

sensors. Without road map information, estimation performance was poor, however with the incorporation

of road map constraints, estimation performance was very good.
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Fig. 1. Single and multiple sensors for direction of arrival measurements. Angular errors are approximated with Gaussian
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Fig. 3. Road model. Roads consist of trapezoidal segments with tangent through the midpoint M of trapezoidal input (P1,P2)
and output points (P3,P4).
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Fig. 4. Road network (blue) and target track (thick red line) and receiver trajectories (black dotted and dashed lines). The
circles and triangles mark the starts and ends of the sensor trajectories.



FIGURES 36

0 20 40 60 80 100
−200

−100

0

100

200

Time
F

D
O

A
 (

H
z)

0 20 40 60 80 100
−1

−0.5

0

0.5

1
x 10

−5

Time

T
D

O
A

 (
s)

Fig. 5. FDOA/TDOA measurements versus time for receiver pair or virtual sensor 1
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Fig. 6. FDOA/TDOA measurements versus time for receiver pair or virtual sensor 2
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Fig. 7. OSPA error versus time for filtering, without road map information, using measurements from virtual sensors 1 and 2.
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Fig. 8. Filter output versus time, with road map information, using measurements from virtual sensor 1.



FIGURES 40

10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

Time

x−
co

or
di

na
te

 (
m

)

 

 

10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

Time

y−
co

or
di

na
te

 (
m

)

True tracks
Estimates

0 20 40 60 80 100
0

0.5

1

Time

E
xi

st
en

ce
 P

ro
b

Fig. 9. Filter output versus time, with road map information, using measurements from virtual sensors 1 and 2.
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Fig. 10. OSPA error versus time for filtering, with road map information, using measurements from virtual sensor 1.
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Fig. 11. OSPA error versus time for filtering, with road map information, using measurements from virtual sensors 1 and 2.
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Fig. 12. Mean OSPA error versus time for filtering with a single virtual sensor and both virtual sensors.
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