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Abstract—This article presents the Labeled Random Finite
Set (LRFS) framework for multi-object systems–systems in
which the number of objects and their states are unknown
and vary randomly with time. In particular, we focus on state
and trajectory estimation via a multi-object State Space Model
(SSM) that admits principled tractable multi-object tracking
filters/smoothers. Unlike the single-object counterpart, a time
sequence of states does not necessarily represent the trajectory
of a multi-object system. The LRFS formulation enables a
time sequence of multi-object states to represent the multi-
object trajectory that accommodates trajectory crossings and
fragmentations. We present the basics of LRFS, covering a
suite of commonly used models and mathematical apparatus
(including the latest results not published elsewhere). Building
on this, we outline the fundamentals of multi-object state space
modeling and estimation using LRFS, which formally address
object identities/trajectories, ancestries for spawning objects,
and characterization of the uncertainty on the ensemble of
objects (and their trajectories). Numerical solutions to multi-
object SSM problems are inherently far more challenging than
those in standard SSM. To bridge the gap between theory
and practice, we discuss state-of-the-art implementations that
address key computational bottlenecks in the number of objects,
measurements, sensors, and scans.

Index Terms—State estimation, Filtering, Labeled random
finite sets, Multi-Object tracking, Multi-Object system.

I. INTRODUCTION

A. State Space Model
State Space Model (SSM), also known as Hidden Markov

Model (HMM), is a fundamental concept in dynamical systems

theory. The state of the hidden object at sampling instant k is

characterized by the state vector xk, in some finite dimensional

state space X. This state generates an observation vector zk
in an (finite dimensional) observation space Z, as depicted in

Fig. 1. State estimation, system identification, and control are

three interrelated fundamental problems in SSM.

Fig. 1: State Space Model of a single-object system.
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State estimation entails estimating the state trajectory
x0:k � (x0, ..., xk), and is the most basic problem upon

which the other fundamental SSM problems are formulated.

The trajectory can be estimated via smoothing, i.e., jointly

estimating the states in batches, or via filtering, i.e., sequen-

tially estimating the state at each time [1], [2], see Fig. 2.

In practice, jointly estimating x0:k is intractable because the

dimension of the variables (and computational load) per time

step increases with k [2]. Hence, it is imperative to smooth

over short windows to ensure the computational complexity

per time step does not grow with time [2]. Filtering–the special

case with a window length of one–is the most widely used [1],

[2]. State estimation is an active research area popularized by

the Kalman filter [1], [3] and particle filter [4], [5], which has

far-reaching impact in many fields of study [1]–[3], [6].

Fig. 2: States and trajectory of a 1-D system. The state history

x0:k defines the trajectory. Thus, a trajectory estimate can be

obtained from a history of individual state estimates.

B. Multi-Object System

A multi-object system is a generalized dynamical system

arising from a host of applications where, instead of a single

object, the number of objects and their states are unknown and

vary randomly with time, as depicted in Fig. 3. The multi-
object state is the set of states of individual objects, while

the set of their trajectories is the multi-object trajectory. The

multi-object state Xk ⊂ X at time k generates an observation

set Zk ⊂ Z. Each existing object may or may not generate an

observation, while there could be false observations not gen-

erated by any object. This is compounded by data association
uncertainty, i.e., it is not known which observations originated

from which objects [7], [8].

In traditional SSM, the terminologies “state estimation”

and “trajectory estimation” are used interchangeably because

they both entail estimation of the trajectory (for the only
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Fig. 3: Multi-object system. The number of states and obser-

vations vary with time. Existing objects may not be detected,

false observations may occur, and it is not known which

observations originated from which objects.

object). In line with this terminology, “multi-object state
estimation” and “multi-object trajectory estimation” should

both refer to estimation of the multi-object trajectory, and

hence are abbreviated as “multi-object estimation” herein.

To differentiate the task of estimating only the multi-object

states (without trajectory information), we use the term “multi-

object localization”. It is important to note from Fig. 4 that

unlike single-object systems, the multi-object state history

X0:k does not necessarily represent the multi-object trajectory.

Consequently, multi-object estimation may not be possible via

filtering nor smoothing over moving windows.

(a) Multi-object state history X0:k = (X0,...,Xk).

(b) Multi-object trajectory.

Fig. 4: States and trajectory of a 1-D multi-object system (note

X0 = {} in this example). Objects may enter, exit, or reenter

the state space. The multi-object state history X0:k does not

necessarily represent (nor contains sufficient information to

construct) the multi-object trajectory.

For a versatile multi-object state representation emulating

single-object systems, the state history must be equivalent

to the trajectory. Fundamentally, this is accomplished by

augmenting distinct labels or provisional identities to each

object state [9, pp. 135, 196-197], as illustrated in Fig. 5.

This labeled multi-object representation enables multi-object

Fig. 5: 1-D labeled multi-object states and trajectory. The

three objects are augmented with red, green, and white labels.

Grouping the elements of the labeled multi-object state history

X0:k = (X0,...,Xk) according to labels gives the multi-object

trajectory. A labeled multi-object trajectory estimate can be

obtained from a history of labeled multi-object state estimates.

(trajectory) estimation to be done via filtering or smoothing

over moving windows [10], [11]. Without the mechanism

for linking trajectories from one window to another, even

if segments of the trajectories can be estimated over short

moving windows, multi-object (trajectory) estimation can only

be performed over a window that grows with time, thus,

computationally infeasible even for a single trajectory [2].

Historically driven by the aerospace industry’s interests in

multi-object tracking (MOT), multi-object system problems

are found in many diverse application areas, including surveil-

lance, situational awareness, oceanography, autonomous vehi-

cles/drones, field robotics, remote sensing, computer vision,

and cell biology [7], [8], [12]–[19]. MOT is a well-established

field, with three main approaches: Multiple Hypothesis Track-
ing (MHT), Joint Probabilistic Data Association (JPDA), and

Random Finite Set (RFS); we refer the reader to the texts [7],

[20], [17] for more details, or to [21] for a brief overview. Due

to false alarms, misdetections, and data association uncertainty,

multi-object system problems are far more challenging than

their single-object counterparts [17].

C. Aims and Scope

It has been over two decades since the introduction of

the RFS framework for multi-object filtering [9]. Prior to

this, related approaches based on point process theory have

been developed in [22]–[25] using random measure theoretic

formulations. The RFS approach gained significant traction

due to its intuitive appeal as a geometric formulation, and

timely emergence in an era when computing technology as

well as numerical filtering techniques were sufficiently ad-

vanced. However, the original RFS filtering formulation only

considers multi-object localization, and additional heuristics

are needed to construct trajectory estimates [16, pp. 505-508].

Indeed, early RFS-based multi-object localization filters were

so popular that their inability to accommodate trajectories

for MOT was mistakenly attributed to the framework itself.

On the contrary, the idea of augmenting distinct labels to

individual states to represent trajectories (illustrated in Fig.

5) has been discussed in [9, pp. 135, 196-197]. Due to its

simplicity, Occam’s Razor suggests that this labeled multi-
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object representation is the proper approach to multi-object

systems, but it was deemed computationally impractical at the

time and abandoned in favor of the unlabeled representation.

Nevertheless, it inspired the development of Labeled RFS [10],

[11], culminating in a suite of analytical and numerical tools

for multi-object SSMs as well as the growth in applications

and commercial interests.
This article provides an overview of the Labeled RFS

(LRFS) approach to multi-object estimation, covering topics

from the elements of RFS to the Generalized Labeled Multi-

Bernoulli (GLMB) filter [26] capable of handling over a

million trajectories [27]. The LRFS formulation not only

ensures that the multi-object trajectory is indeed given by

the history of the multi-object states, accommodating trajec-

tory crossings, fragmentations, and ancestries (for spawning

objects), but also enables characterization of uncertainty on

the multi-object trajectory ensemble and alleviation of critical

computational bottlenecks. Existing overviews such as the

reviews [28], [29], surveys [30], [31], and texts [16], [17],

[32], mainly focus on RFS multi-object localization (which

does not address MOT), though some early developments in

LRFS filters have been discussed in the text [17], survey

[31], and particle filtering overview [33]. Keeping in mind

the balance between scientific rigor and utility, we present

an up-to-date coverage of LRFS analytical and computational

tools, as well as the ensuing multi-object estimation solutions

that address key computational bottlenecks in the number of

objects, measurements, sensors, and scans. This coverage also

includes results on closed-form information divergences for a

versatile class of LRFSs, and estimators based on the notion

of joint existence probability unique to LRFS, not previously

published.
The rest of the article is organized as follows. Section II

presents some background on Bayesian state estimation and

the labeled set representation of the multi-object state. To

model set-valued random variables, Section III presents the

fundamentals of RFS theory and some classical RFS models.

Section IV introduces LRFS and the mathematical apparatus

for multi-object state/trajectory modeling. Building on this,

Section V extends Bayesian state estimation to multi-object

SSM along with solutions and discussions of related SSM

problems. Closing remarks are given in Section VI.

II. BACKGROUND

We begin with an outline of Bayesian state estima-

tion for discrete-time SSMs in Subsection II-A. Subsection

II-B formalizes the set representation for the multi-object

state/trajectory that emulates the single-object state/trajectory,

while Subsection II-C discusses the challenges of working

with sets.

A. Bayesian State Estimation
In an SSM, the system state vector xk ∈ X at time k evolves

from its previous value xk-1, and generates an observation

zk ∈ Z according to the state and observation equations

xk = Fk (xk-1, uk-1, νk-1) , (1)

zk = Gk (xk, uk, μk) , (2)

TABLE I: Common notations from Section II onwards.

Notation Description
xm:n xm, xm+1, . . . , xn

X Finite dimensional state space

xk State vector at time k

Z Finite dimensional observation space

zk Observation vector at time k

fk(·|xk-1) Markov transition density to time k given xk-1

gk(zk|xk) Likelihood of observing zk given xk

p0:k(x0:k) Posterior density at x0:k

pk(xk) Filtering density at xk

D(f) Domain of function f

� Label of an object

L (Discrete) space of labels

x, xk Labeled state (xk, �) of an object at time k

X , Xk Labeled multi-object state at time k

where Fk and Gk are non-linear mappings, uk (and uk-1)

is the control or input signal, νk-1 and μk are, respectively,

process and measurement noise.

State estimation, i.e., estimation of the state trajectory,

together with system identification and control are the three

fundamental problems in dynamical system. In system iden-

tification, the goal is to estimate the system parameters from

the system input and output, while in control, the goal is to

use the input signals to drive the system state/trajectory to

prescribed regions of the state space. In this article, we focus

on state estimation, and hence the control signal is omitted.

The Bayesian estimation paradigm models the state and

observation as random vectors. The state equation is charac-

terized by the Markov transition density fk(xk|xk-1), i.e., the

probability density of a transition to state xk at time k given

the previous state xk-1. The observation equation is character-

ized by the measurement likelihood function gk(zk|xk), i.e.,

the probability density of observing zk given state xk. Further,

it is assumed that measurements are conditionally independent,

i.e., the probability density of the observation history z1:k
condition on x1:k is given by

p1:k(z1:k|x1:k) = gk(zk|xk)gk-1(zk-1|xk-1)...g1(z1|x1).

All information about the state history to time k is encap-

sulated in the posterior density p0:k(x0:k) � p0:k(x0:k|z1:k),
which can be computed recursively for any k ≥ 1, starting

from an initial prior p0, via the Bayes posterior recursion:

p0:k(x0:k) =
gk(zk|xk)fk(xk|xk-1)p0:k-1(x0:k-1)∫
gk(zk|ςk)fk(ςk|ςk-1)p0:k-1(ς0:k-1)dς0:k

. (3)

Note that the dependence on z1:k is omitted for notational

compactness. The above recursion, also known as smoothing-

while-filtering [34] (or simply smoothing in this paper), is

not suitable for real-time operations. Since the dimension of

the trajectory probability density grows with time, computa-

tional/memory requirement increases at each time step and

quickly becomes intractable. Real-time applications require

algorithms with computational complexity per time step that

does not grow with time [2, pp. 53-54].
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Fig. 6: Propagation of the filtering density pk.

The filtering density pk(xk) �
∫
p0:k(x0:k)dx0:k-1, i.e.,

the marginal of the posterior density at the current time,

encapsulates all information about the current state, and can

be computed recursively using the Bayes filtering recursion:

pk(xk) =
gk(zk|xk)

∫
fk(xk|y)pk-1(y)dy∫

gk(zk|x)
∫
fk(x|y)pk-1(y)dydx

. (4)

The above recursion propagates a function on a fixed dimen-

sional space, see Fig. 6, and hence has a fixed computa-

tional complexity per time step [2]. The smoothing density

pk-l|k(·|z1:k), i.e., the marginal of the posterior at time k− l,
can also be computed recursively (e.g., forward-backward or

two-filter smoothing), but is not widely used, and will not be

covered here. Interested readers are referred to [2], [34].

The state can be estimated from appropriate probability

densities via the expected a posteriori (conditional mean) or

maximum a posteriori (conditional mode) estimators. These

estimators are Bayes optimal with respect to certain Bayes

risks (or penalties), and statistically consistent, i.e., converge

(almost surely) to the true state as more data accumulate [6],

[35]. The trajectory can be estimated from the posterior jointly

as a sequence of states, or as a sequence of individual state

estimates from filtering (or smoothing). Smoothing refines

state estimates from data that arrives later, and is expected

to yield better estimates than filtering [34], [36], [37].

Numerical methods for Bayesian state estimation is an

active area of research [1]–[3], [38]. The posterior recursion

admits the Kalman smoother as an analytic solution for linear

Gaussian models [1], while for general non-linear models,

Sequential Monte Carlo (SMC) approximations have been

proposed [39]. To maintain a fixed computational complexity

per time step, smoothing is performed over short moving

windows. The most widely used is filtering, the special case

with a window length of one. Under linear Gaussian models,

the filtering recursion admits the Kalman filter as an analytic

solution [1]. In general, analytic solutions are not possible.

Popular approximate solutions include the extended Kalman

filter [1], [3], unscented Kalman filter [40], Gaussian sum filter

[41], cubature Kalman filter [42], [43], SMC/particle filter [4],

[5], [37], [38], [44] and particle flow filter [45].

B. Multi-Object Representation

Regardless of the differences in MOT approaches, mathe-

matically, a trajectory in a state space X and discrete-time

window T is a mapping τ : T → X [27]. The domain,

D(τ) ⊆ T, corresponds to the set of instants when the object

exists. This definition covers the so-called fragmented trajec-
tories/tracks, i.e., trajectories with non-contiguous domains,

to accommodate objects physically exiting and reentering the

state space, as well as trajectory estimates produced by most

MOT algorithms, as depicted in Fig. 4(b).
For versatility and applicability to a wide range of problems,

we require a multi-object representation that allows:

• (R.1) the multi-object trajectory to be determined from

the multi-object state history (analogous to single-object

systems), ensuring multi-object estimation to be accom-

plished with a complexity per time step that does not

grow with time, for computational tractability;

• (R.2) fragmented trajectories (see Fig. 4(b)) and multiple

objects occupying the same attribute state, to model

scenarios unique to challenging multi-object estimation

problems such as reappearance/reidentification and merg-

ing/occlusion [46]–[48].

Neither of these requirements could be met with the unlabeled

representation, as illustrated in Fig. 4, and the fact that a set

cannot contain repeated elements. The labeled representation

[9, pp. 135, 196-197], [10], [11] described in the following is

most suitable, meeting both requirements.
The labeled state of an object at a particular instant (if

it exists) is represented by x = (x, �), where x ∈ X is its

attribute state (e.g., kinematics, visual features, etc.), and � is

its label, a provisional distinct identity in some discrete space

L called a label space. A common practice is to use � = (s, ι),
where s is the time of birth and ι is an index to distinguish

objects born at the same time [10], [11].
A labeled multi-object state X is a finite subset of the prod-

uct space X× L with distinct labels, i.e., no two elements of

X share the same label. Fundamentally, macroscopic objects

(whose extents are significantly larger than the de Broglie

wavelengths) can be labeled with distinct identifiers [49].

In some applications, distinct identifiers are even explicitly

included in the intrinsic states of objects, e.g., in [50] the state

of each object contains a unique RFID signal (from a finite

set of RFID signals). In practice, track labeling is a required

functionality of a MOT system, see e.g., [7], [49].
Labeling enables a sequence Xj:k of multi-object states

to completely characterize the multi-object trajectory–the set

of trajectories of the objects–on the interval {j:k} analogous

to single-object systems, via the grouping of states according

to labels (illustrated in Fig. 5). Formally, a trajectory in

Xj:k is a time-stamped sequence [(xs, �), ..., (xt, �)] of labeled

states in Xj:k with a common label, which indeed defines

a mapping τ� : i �→ xi, i ∈ D(τ�). The labeled multi-

object representation allows: multi-object estimation (filtering

or smoothing on moving windows, see Figs. 5 and 7(a)) with

computational complexity per time step that does not grow

with time; multiple objects simultaneously occupying the same

attribute state, e.g., {(x, �1), (x, �2)}, which inevitably occurs

in a finite state space (as often is the case in the HMM

literature), representing mergings/collisions, and occlusions

in a wide range of applications, e.g., [47], [48], [51], [52];

and fragmented trajectories, arising from objects exiting and

reentering the state space (especially when it is bounded),

intrinsic to the reappearance/reidentification problem in com-

puter vision [46], [53], [54].
Pragmatically, labeling is unavoidable in real multi-object

systems. Trajectory estimation over a growing window is
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(a) With labels. (b) Without labels.

Fig. 7: Multi-object trajectories in moving windows. In (a)

labels enable linking the trajectories between the windows

{0:3} and {1:4} to represent trajectories on {0:4}. Without

labels (b), there is no mechanism to link these trajectories.

numerically intractable as the computational complexity per

time step grows with time [2]. Thus, it is imperative to use

shorter moving windows, and link the trajectories between the

windows together. This is straightforward with a labeled multi-

object representation as illustrated in Fig. 7(a). In an unlabeled

representation, there is no means to link the trajectories as

illustrated in Fig. 7(b), making multi-object trajectory estima-

tion infeasible without resorting to heuristic post-processing.

Note that heuristically matching trajectories between windows

via optimal assignment still requires labeling them.

State representation goes hand in hand with (mathematical)

metrics for multi-object estimation error [55, Sec. 2.4]. A

popular metric in the literature is the Optimal Sub-Pattern

Assignment (OSPA) metric for multi-object states [56], which

has been extended to multi-object trajectories in [27]. This

extension, called the OSPA(2) metric, penalizes errors in lo-

calization, number of trajectories, fragmentation and identity

switching. The OSPA and OSPA(2) metrics, respectively, gauge

localization and tracking errors. The reader is referred to

[57] for a comprehensive study of multi-object estimation

performance evaluations, which includes such metrics.

C. Why Working with Sets is Tricky?

The Bayesian framework models the state (and observation)

as a random variable, and consequently, in a multi-object SSM,

a finite-set-valued random variable or a random finite set (RFS)

is needed to model the multi-object state (and observation).

Probability densities of RFSs are needed for the Markov

transition density, likelihood function and posterior/filtering

density characterizing the multi-object SSM.

The probability density of an RFS cannot be treated like that
of a random vector as illustrated by the following example.

(a) Landing set {x1}.

(b) Landing set {x2, x3}.

Fig. 8: Distribution of landing positions. Position x1 is 3 times

less likely than x2, and also 3 times less likely than x3.

Example 1. (Borrowed from [58]) Suppose that the number

of apples falling in a day is uniformly distributed between 0

and 9, and that conditional on the number of fallen apples, the

landing positions are independently and identically distributed

(i.i.d.) according to the probability density pf , shown in Fig.

8. Treating the set of landing positions as a random vector

(see e.g., [59]), and noting that the probability of m apples

falling (m < 10) is 1
10 , we have p({x1:m}) = 1

10

∏m
i=1 pf (xi).

Consider the landing sets {x1} and {x2, x3}, where x1, x2,
and x3 are shown in Fig. 8. Which of the sets is more likely?

Since p({x1}) = 2 × 10-2 and p({x2, x3}) = 3.6 × 10-2,

it would appear that {x2, x3} is more likely. However, had

we measured distance in centimeters, then the probability

density pf is scaled by 10-2 (because it is non-zero on the

interval (−100, 100) and must integrate to 1), which results in

p({x1}) = 2×10-4 > p({x2, x3}) = 3.6×10-6, contradicting

the previous conclusion!

The notion of (probability) density goes hand in hand with

integration. The density pX of a random vector X , is defined

such that Pr(X ∈ S) =
∫
S
pX(x)dx, for any (measurable)

S. This means pX(x) is the instantaneous probability per unit

hyper-volume (or formally, the Radon-Nikodým derivative of

the probability distribution with respect to hyper-volume) at x,

and is interpreted as the likelihood of instantiation x. Instanti-

ations with higher density values are more likely (or probable)

than those with lower ones, and their relative likelihoods are

invariant to the unit of hyper-volume. The multi-object state

space is the class of all finite subsets of X , and does not

inherit the usual Euclidean notion of density/integration. As

noted in [28], the inconsistency in the above example arises

because p({x1}) is measured in “m-1” or “cm-1” whereas

p({x2, x3}) is measured in “m-2” or “cm-2”, and hence

cannot be meaningfully compared.
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TABLE II: Common notations from Section III onwards.

Notation Description
X Finite dimensional Euclidean space

F(X ) Class of all finite subsets of X
1T (·) Indicator function for a set T
πΣ Belief (or FISST) density of (the RFS) Σ

|X| Cardinality (number of elements) of X

hX Multi-object exponential
∏

x∈X h (x), with h∅ = 1

ρΣ Cardinality distribution of Σ

vΣ Probability hypothesis density (PHD) of Σ

〈f, g〉 Inner product
∫
f(x)g(x)dx of functions f and g

δY [X] Kronecker-δ, δY [X] = 1 if X = Y , and 0 otherwise

Another “tricky” issue is the truncation of set-functions
(functions of sets), made up of intractably large sums in

most multi-object system problems. Any function of a set

{x1:n} must be symmetric in x1, ..., xn, but truncation does

not necessarily preserve symmetry, rendering the truncated

sum an invalid set-function. Consider, e.g., the set-function

f({x, y}) = x+y+xy, which is clearly symmetric. However,

truncating y gives the approximation f̂(x, y) = x+xy, which

is non-symmetric because f̂(x, y) �= f̂(y, x) = y + xy, and

thus not a valid function of the set {x, y}. In general, care

must be taken to ensure validity of the results when truncating

set-functions, see also Subsections IV-D, IV-F, and V-B.

III. RANDOM FINITE SETS FUNDAMENTALS

A random finite set (RFS) of X is a random variable taking
values in the class of all finite subsets of X , hereon denoted

as F(X ). The cardinality and elements of an RFS are random

variables, and the elements are unordered. A widely known

example is the Poisson RFS, where the number of points is

Poisson distributed and the points are i.i.d. according to some

probability law on X [60]. In this article, we restrict ourselves

to a finite dimensional Euclidean space X so that RFSs of X
have well-defined probability densities.

In Subsection III-A, we summarize some of the fundamental

descriptors for RFSs. RFS statistics relevant to multi-object

systems such as the cardinality and Probability Hypothesis

Density (PHD) are presented in Subsection III-B, while multi-

object estimators are discussed in Subsection III-C. Subsection

III-D summarizes a number of popular RFS models.

A. Fundamental Descriptors

RFSs fall under the broader class of random (closed) sets

in stochastic geometry [61], which also enables Bayesian

inference with uncertainty models such as fuzzy set, Dempster-

Shafer theory, and rule-based expert system [9]. Stochastic

geometry has some overlaps with point process theory, and

an RFS can be treated as a simple finite point process, i.e.,

a point process whose realizations are finite and have no

repeated points [61], [62]. While the probability density of a

point process may not exist, RFSs of Rn do admit probability

densities [62, Prop. 5.4.V, p. 138], [9, Prop. 19, p. 159], [60].

1) Probability Density: Since the notion of hyper-volume

needed for density/integration on X does not extend to F(X ),
we adopt an equivalent construct–the uniform (probability)

distribution. In point process theory, the unit Poisson RFS

exhibits complete spatial randomness analogous to the uni-

form distribution on X (see e.g., [60]–[62]). Specifically, the

number of points is Poisson distributed with unit rate, and

the points are uniformly i.i.d. in X . The Poisson measure–the

unnormalized probability distribution of a unit Poisson RFS–is

defined for each (measurable) T ⊆ F(X ) by

μ(T ) =

∞∑
i=0

1

i!U i

∫
1T ({x1:i}) dx1:i,

where 1T (·) is the indicator function for T , and U is the unit

of hyper-volume in X , with the convention that the integral

for i = 0 is the integrand evaluated at ∅, i.e., 1T (∅). Note that

1/U i cancels out the unit U i of dx1:i. Further, integration of

a unitless (or dimensionless) function f on F(X ) is realized

via the Lebesgue integral with respect to (w.r.t.) the Poisson

measure μ [60], [63]:∫
f(X)μ(dX) =

∞∑
i=0

1

i!U i

∫
f({x1:i})dx1:i.

Analogous to random vector, the probability density of an

RFS Σ is defined as a non-negative function pΣ on F(X ) such

that for any (measurable) T ⊆ F(X ),

Pr(Σ ∈ T ) =

∫
T
pΣ(X)μ(dX) =

∫
1T(X)pΣ(X)μ(dX),

i.e., integrating the probability density yields the probability

distribution. This means the instantaneous probability per unit

Poisson measure at X ∈ F(X ) is

pΣ(X) =
Pr(Σ ∈ dX)

μ(dX)
,

the (unit-less) Radon-Nikodým derivative of the probability

distribution w.r.t. μ. If pΣ(X) > 0 implies pΣ(Y ) > 0 for

all Y ⊆ X , Σ is said to be hereditary [64]. Unlike a random

vector, the probability density pΣ(X) does not have the usual

likelihood interpretation, see [58] for further details.

2) Belief Density: Finite Set Statistics (FISST) offers an

alternative notion of density/integration on F(X ), which by-

passes measure theoretic constructs [9], [16], [17], [65]. In

FISST, the set integral of a function f on F(X ) over a

(compact) region S ⊆ X is defined as:∫
S

f(X)δX �
∞∑
i=0

1

i!

∫
Si

f({x1:i})dx1:i, (5)

where Si denotes the i-fold Cartesian product of S, with S0 =
∅, and the integral for i = 0 is f(∅) by convention. Note that

f({x1:i}) has unit of U−i, which cancels the unit U i of dx1:i,

hence
∫
f({x1:i})dx1:i and the set integral are unitless.

The belief (or FISST) density of an RFS Σ is defined as

a non-negative function πΣ on F(X ) whose set integral over

any region S ⊆ X gives the belief functional at S, i.e.,

Pr(Σ ⊆ S) =

∫
S

πΣ(X)δX.
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The belief functional Pr(Σ ⊆ S), as a function of S, is not

a probability distribution, but nonetheless, is a fundamental

descriptor of Σ [9], [16], [17], from which the belief density

can be obtained by taking set derivatives (interested readers

are referred to [16], [17] for more details). A related funda-

mental descriptor is the void probability functional, defined as

Pr(Σ ∩ S = ∅), the probability that S contains no points

of Σ, i.e., Σ is contained in the complement of S. This

is the belief functional at the complement of S [61], [62].

Similarly, the capacity functional, defined as the probability

that S contains at least one point of Σ, is also a fundamental

descriptor because Pr(Σ∩S �= ∅) = 1−Pr(Σ∩S = ∅) [61].

It is important to note that the probability density w.r.t. the

Poisson measure and the belief density are equivalent [65]:

pΣ(X) = U |X|πΣ(X),

where |X| denotes the cardinality (number of elements) of

X . Hence, they are collectively referred to as multi-object
densities. For the purpose of introducing RFS algorithms, it is

more convenient to use the belief density.

3) Probability Generating Functional (PGFl): Another

RFS fundamental descriptor pertinent to multi-object system is

the PGFl, defined for any unitless test function h : X → [0, 1]
as the expectation [16], [17], [61], [62]

GΣ[h] � E
[
hΣ
]
=

∫
hXπΣ(X)δX,

where the multi-object exponential hX �
∏

x∈X h (x), with

the convention h∅ = 1. It is clear from the definition that

GΣ[h] ∈ [0, 1], and GΣ[1S ] = Pr(Σ ⊆ S). PGFls are

analogous to probability generating functions.

The convolution of multi-object densities translates to the

multiplication of PGFls. Suppose that Σ is the union of disjoint

and statistically independent RFSs Σ1,...,Σn. Then,

GΣ[h] = GΣ1
[h]...GΣn

[h], (6)

πΣ(X) =
∑

W1�...�Wn=X

πΣ1
(W1)...πΣn

(Wn), (7)

where the sum is taken over all mutually disjoint W1,...,Wn ⊆
X (including empty sets) that cover X [16], [17, pp. 85-86].

The multi-object density (and other statistics) can be ob-

tained by differentiating the PGFl [16], [17], [61], [62]. For a

functional G on the space of test functions, let

G(1)[h; ζ1] � (dG)h[ζ] = lim
ε→0

G[h+ εζ]−G[h]

ε
,

denote its Gâteaux differential at h in the direction ζ (if it

exists). The n-th Gâteaux differential at h is a multi-linear

form in the directions ζ1, ..., ζn, given recursively by

G(n)[h; ζ1:n] = (dG(n−1)[·; ζ1:n−1])h[ζn].

Further, note that a multi-linear form can be expressed as

F [ζ1:n] =
∫
ζ1(y1)...ζn(yn)f(y1:n)dy1:n, and is completely

characterized by the function f , which can be rewritten in

the Dirac delta notation F [δx1
, ..., δxn

] � f(x1:n). This is

suggestive of evaluating f at x1, ..., xn via substituting the

Dirac deltas δx1 , ..., δxn into the integral that defines F , i.e.,

f(x1:n) can be treated as the value of multi-linear form F at

Fig. 9: PHD or intensity function on a 1-D state space.

δx1
, ..., δxn

. Using the Volterra functional derivative w.r.t. a

finite set [17, pp. 66], defined by

δG

δ{x1:n}
[h] � G(n)[h; δx1 , ..., δxn ],

with δG
δ∅ [h] � G[h], we have [17, pp. 95]

δG

δX
[0] = πΣ(X).

Volterra functional set derivatives can be calculated using a

suite of differentiation rules [16, pp. 383–395], including a

powerful generalized Faà di Bruno’s chain rule [66]. Further

properties and applications of PGFls in multi-object systems

can be found in the texts [16], [17].

B. Cardinality and Probability Hypothesis Density
In multi-object systems, relevant statistics of an RFS Σ often

involve its cardinality (number of elements). The probability

generating function (PGF) of the cardinality |Σ|, evaluated at

z ∈ [0, 1], is the PGFl evaluated at the test function h(x) =
z, i.e., G|Σ|(z) = GΣ[h = z]. The cardinality distribution

ρΣ(n) � Pr(|Σ| = n) can be computed via [16], [61], [67]

ρΣ(n) =
1

n!

∫
πΣ({x1:n})dx1:n =

1

n!
G

(n)
|Σ| (0),

where G
(n)
|Σ| is the n-th derivative of the PGF. Statistics of the

cardinality can be computed from ρΣ or G|Σ|.
Another well-known cardinality-based statistic of an RFS is

the intensity function [61], [62], also known as the Probability
Hypothesis Density (PHD) in the MOT literature [16], [68].

As illustrated in Fig. 9, it is defined as a non-negative function

vΣ (on X ) whose integral over any region S ⊆ X gives the

expected cardinality in S, i.e.,

E [|Σ ∩ S|] =
∫
S

vΣ(x)dx. (8)

The PHD can be computed from the multi-object density or

PGFl by [17, pp. 93]

vΣ(x) =

∫
πΣ({x} ∪W )δW =

δG

δ{x} [1],

and is the 1st of the factorial moment densities [61], [62]:

vΣ(X) �
∫

πΣ(X ∪W )δW =
δG

δX
[1].

Interestingly, knowledge of the PHD vΣ is sufficient to cal-

culate the expectation of random sums of a (measurable) real

function f over Σ, via Campbell’s Theorem [61], [64]

E
[∑

x∈Σ f(x)
]
=

∫
f(x)vΣ(x)dx.
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Definition (8) means that the PHD is the density of the

expected cardinality w.r.t. hyper-volume. This physically in-

tuitive interpretation is one of the factors behind the appeal of

the PHD filter. The local maxima of the PHD are points in

X with the highest local concentration of expected number of

objects (per unit hyper-volume), suggesting that they are the

most likely states for the underlying objects, see Fig. 9. Based

on such interpretation, the PHD estimate and cardinalized
PHD (CPHD) estimate, respectively, use n̂ = round (E [|Σ|])
and n̂ = argmaxn ρΣ(n) as the estimated number of objects,

and the n̂ highest local maxima of the PHD as the estimated

states, see also [16, pp. 595] for more details.

For a hereditary RFS, the intensity function can be extended

to the conditional intensity at a point x, defined as [64]

vΣ (x|Y ) =
pΣ (Y ∪ {x})

pΣ(Y )
.

Note that the intensity function is given by the expectation∫
vΣ (x|Y )πΣ(Y )δY. Moreover, the probability density pΣ

(and belief density πΣ) is completely determined by its condi-

tional intensity [61], [64]. Working with the conditional inten-

sity eliminates the computation of the normalizing constant,

but requires certain consistency conditions.

C. Multi-Object Estimators

Given a probability density, estimators are needed to deter-

mine estimates of the underlying random variable. Popular es-

timates such as the mean and mode are not directly applicable

to RFSs, because there is no average for sets nor a likelihood

interpretation for multi-object density [58]. Nonetheless, as the

1st moment, the PHD can be regarded as the expectation of

an RFS, and hence the PHD estimate (Subsection III-B) can

be treated as the mean estimate. The cardinality of the PHD

estimate has a high variance for a large number of objects since

the variance of a Poisson is equal to the mean. The CPHD

estimate is an extension to improve the cardinality estimate.

While the multi-object density does not have a likelihood

interpretation over F(X ), when restricted to a cardinality it

can be interpreted as a likelihood. This observation leads to

an extension of the mode estimate, called the Marginal Multi-
object (MaM) estimate, defined as the most probable multi-
object state given the most probable cardinality [16, pp. 497-

498] (which requires computing: the most probable cardinality

from the cardinality distribution; and the supremum of the

multi-object density conditioned on this cardinality). Another

estimate that emulates the mode as an optimal Bayes estimator

is the Joint Multi-object (JoM) estimate [16, pp. 498-500]

X̂ = arg sup
X∈F(X )

c|X|

|X|!πΣ(X),

where c > 0 is a constant with magnitude in the order of the

desired accuracy, measured in units of hyper-volume in X .

D. Classical RFS Models

The following RFSs are popular models in point process and

multi-object SSM, especially for multi-object observations and

multi-object localization. Hereon, we denote the inner product

∫
f(ζ)g(ζ)dζ of two functions f , g (or

∑∞
�=0 f(�)g(�) when

they are sequences) as 〈f, g〉, and the generalized Kronecker

delta that takes arbitrary arguments as

δY [X] �
{
1, if X = Y

0, otherwise
.

1) Poisson: A Poisson RFS (or Poisson point process) of X
is completely characterized by its PHD (intensity function) vΣ
[17], [61], [62, pp. 98], with multi-object density and PGFl:

πΣ(X) = e-〈vΣ,1〉 vXΣ , GΣ[h] = e〈vΣ,h-1〉.

Its cardinality is Poisson distributed with mean 〈vΣ, 1〉, i.e.,

ρΣ(n) = e-〈vΣ,1〉〈vΣ, 1〉n/n!, and conditioned on the cardi-

nality (number of distinct elements), each (distinct) element is

i.i.d. according to vΣ/〈vΣ, 1〉.
The Poisson RFS models “no interaction” or “complete

spatial randomness”, and is one of the best-known and most

tractable of point processes [60]–[62], [69]. In multi-object

systems, it is a popular model for clutter or false alarms.
2) I.I.D. Cluster: An i.i.d. cluster RFS is a generalization

of the Poisson RFS to accommodate cardinality distributions

other than Poisson, and is completely characterized by its

cardinality distribution ρΣ and PHD vΣ. Specifically, the

multi-object density and PGFl are [17], [61], [62, pp. 99]:

πΣ(X) =
ρΣ(|X|)|X|!
〈vΣ, 1〉|X| vXΣ , GΣ[h] = G|Σ|

( 〈vΣ, h〉
〈vΣ, 1〉

)
.

The cardinality of an i.i.d. cluster RFS is distributed according

to the prescribed ρΣ, and conditioned on the cardinality, each

(distinct) element is i.i.d. according to vΣ/〈vΣ, 1〉. When ρΣ
is Poisson, this reduces to the Poisson RFS [61], [62].

Remark 1. Multi-object densities for i.i.d. cluster (and Pois-

son) RFSs are defined for a fixed dimensional X . They may

not exist otherwise [62, Prop. 5.4.V, p. 138], [60].

3) Multi-Bernoulli: A Bernoulli RFS, parameterized by the

pair (r, p), has probability 1−r of being empty, and probability

r of being a singleton, conditioned on which the element is

distributed according to the probability density p (on X ). The

multi-object density, PGFl, cardinality distribution, and PHD

are given by [17, pp. 100]

πΣ(X) = (1− r)δ∅[X] + rp(x)δ{x}[X],

GΣ[h] = 1− r + r〈p, h〉,
ρΣ(n) = (1− r)δ0[n] + rδ1[n],

vΣ(x) = rp(x).

A multi-Bernoulli RFS (for compactness we drop the ‘RFS’)

is a union of disjoint and independent Bernoulli RFSs with

parameters {(r(ζ), p(ζ))}ζ∈Ψ [17, pp. 101]. Its PGFl is the

product of the constituent Bernoulli RFSs’ PGFls,

GΣ[h] =
∏
ζ∈Ψ

(1− r(ζ) + r(ζ)〈p(ζ), h〉),

and its multi-object density is the convolution of the con-

stituent Bernoulli RFSs’ densities [17, pp. 102]

πΣ({x1:n}) = πΣ(∅)
∑

1≤i1 
=... 
=in≤|Ψ|

n∏
j=1

r(ζij )p(ζij )(xj)

1− r(ζij )
, (9)
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TABLE III: Common notations from Section IV onwards.

Notation Description
A Attribute projection (x, �) �→ x

L Label projection (x, �) �→ �

Δ(X) Distinct label indicator δ|X|[|L(X)|]
〈f〉({�1:n}) Label-marginal

∫
f({(x1, �1), ..., (xn, �n)})dx1:n

πΣ Multi-object density of (the LRFS) Σ

wΣ(L) Probability that Σ has label set L

ρΣ Cardinality distribution of Σ

vΣ PHD or intensity of Σ

Xj:k Multi-object sequence/trajectory on {j:k}
L(Xj:k) (L(Xj), ...,L(Xk))

T (�) Set of instants that Xj:k contains label �

x
(�)

T (�) [(xi, �) ∈ Xi]i∈T (�), trajectory of � in Xj:k

hXj:k
∏

�∈L(Xj:k)
h(x

(�)

T (�)),∏
×k

i=jSi Sj × ...× Sk

Δ(Xj:k) Multi-scan distinct label indicator
∏k

i=j Δ(Xi)

where πΣ(∅) =
∏

ζ∈Ψ(1− r(ζ)), and ζ1,..., ζ|Ψ| enumerate all

the elements of Ψ. By convention, the sum reduces to 1 when

n = 0, and zero when n > |Ψ|. It is implicitly assumed that

r(ζ) ∈ [0, 1). Statistics such as the cardinality distribution and

PHD are given by [17, pp. 102],

ρΣ(n) = πΣ(∅)
∑

1≤i1<...<in≤|Ψ|

n∏
j=1

r(ζij )

1− r(ζij )
, (10)

vΣ(x) =
∑
ζ∈Ψ

r(ζ)p(ζ)(x). (11)

Multi-Bernoullis are often used for modeling object sur-

vival/death, and detection uncertainty in observations.

Remark 2. For an i.i.d. cluster (and Poisson) RFS, the joint

distribution of the elements is conditioned on the cardinality

(i.e., the number of distinct elements), which ensures dis-

tinctness of the elements. However, for a multi-Bernoulli, the

distribution of each element is conditional on its existence,

independent from others, and there is no mechanism to prevent

two constituent (independent) Bernoulli RFS’s from sharing

the same point. For example, consider the Bernoulli RFSs

B(i) with r(i) = 0.5, p(i)(·) = N (·; 0, 1), i = 1, 2. Noting

that the likelihood of a realization x1 from B(1) and x2

from B(2) is 0.25N (x1; 0, 1)N (x2; 0, 1), the likelihood of

x1 = 0 and x2 = 0 is not only positive, but the highest

possible among all values of x1, x2, and hence, not negligible.

The disjoint condition between the constituent Bernoulli RFSs

implies dependence. The expressions for the multi-Bernoulli’s

PGFl and multi-object density implicitly assume negligible

dependence between constituent components. This assumption

is reasonable for traditional detection processes based on

thresholding, which return distinct observations.

IV. LABELED RANDOM FINITE SET

A labeled RFS is a special class of RFSs introduced in [10],

[11] for modeling multi-object states/trajectories. It provides

a versatile multi-object estimation framework that admits

characterization of uncertainty for the multi-object trajectory

ensemble, and meaningful approximations with characteriz-

able errors that are requisite for principled solutions.

Formally, a labeled RFS (LRFS) with attribute space X and

(discrete) label space L = {αi : i ∈ N}, is an RFS Σ of the

product space X × L such that each realization has distinct

labels. Defining the attribute projection A : (x, �) �→ x, and

label projection L : (x, �) �→ �, so that A(X) and L(X) are,

respectively, the sets of attributes and labels of X , then X
has distinct labels if the distinct label indicator

Δ(X) � δ|X|[|L(X)|], (12)

equals 1, i.e., L(X) and X have the same cardinality.

An LRFS can be thought of as a simple finite marked point
process1 of X×L, with distinct marks from the discrete mark

space. Note the distinction between “simple finite marked” and

“marked simple finite” point processes. The former is simple,

but the point process formed by unmarking (discarding the

marks) is not necessarily simple. The latter is the special case

with a simple unmarked version, because it is constructed

by marking an RFS, and hence, has the same cardinality

as its unmarked version [11]. In general, an LRFS does not

necessarily have the same cardinality as its unmarked version.

Subsection IV-A introduces the concept of joint existence

probability and the ensuing multi-object estimators unique to

LRFSs. Subsections IV-B to IV-D summarize popular LRFS

models. Information divergences for LRFS are presented in

Subsection IV-E, including closed-form expressions not pre-

viously published. LRFS approximations and spatio-temporal

modeling are discussed in Subsections IV-F and IV-G.

Following [11], vectors are represented by lower case letters

(e.g., x and x), and finite sets are represented by upper case

letters (e.g., X and X), where the symbols for labeled entities

and their distributions are bolded (e.g., x, X , π, etc.) to

distinguish them from unlabeled ones.

A. Joint Existence Probability

Pertinent to multi-object estimation and unique to LRFSs

is the notion of joint existence probability. Let us denote the

label-marginal of a function f : F(X× L) → R, by

〈f〉({�1:n}) �
∫
f({(x1, �1), ..., (xn, �n)})dx1:n, (13)

with 〈f〉(∅) � f(∅). For an LRFS Σ with multi-object density

πΣ, we define the joint existence probability of L ⊆ L, and

the label-conditioned joint attribute (probability) density for

distinct labels �1:n, respectively, as [70]

wΣ(L)� 〈πΣ〉(L), (14)

πΣ|�1:n(x1:n) � πΣ({(x1, �1), ..., (xn, �n)})
wΣ({�1:n})

, (15)

with the convention that πΣ|�1:n(x1:n) = 1 whenever

wΣ({�1:n}) = 0. Then wΣ(·) is a probability distribution on

F(L), and πΣ|�1:n(·) is a probability density on X
n [70]. The

joint existence probability wΣ(L) is the probability that the

LRFS Σ has label set L.

1A marked point process Σ of X × M, with mark space M, satisfies
|Σ ∩ (S ×M)| < ∞ for any bounded S ⊆ X [60]–[62], [64].
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In the context of estimators, the joint existence probability

is more informative than the cardinality distribution [70]

ρΣ(n) =
∑
L⊆L

δn[|L|]wΣ (L) , (16)

in the following sense. The label sets of cardinality n, each

with small wΣ (L), could accumulate up to a large ρΣ(n).
Thus, sets with the most probable cardinality, e.g., the MaM

estimate in Subsection III-C, could have negligible joint ex-

istence probability compared to the highest joint existence

probability achievable (by sets with other cardinalities).

A judicious alternative to the MaM estimate is the label-
MaM estimate, defined as the most probable multi-object
state given the most probable label set (which is meaningful

because the label set is a discrete variable). This estimator

seeks the label set L∗ with highest joint existence probability,

whose attributes are given by the mode of the corresponding

label-conditioned joint attribute density. If the most probable

label set is not unique, we select one with the most probable

cardinality, and if this is still not unique, we select the one that

yields the highest label-conditioned joint attribute density.

LRFS furnishes the PHD or intensity value vΣ(x, �) with

an additional interpretation as the attribute PHD at x, of (the

object with) label �. Recall the definition of the PHD from

(8) that for any S ⊆ X, the expected number of objects with

attributes in S and label � is given by

E [|Σ ∩ (S × {�})|] =
∫
S

vΣ(x, �)dx.

Thus, for a given label �, the function vΣ(·, �) is its attribute

PHD. Further, the distinct label property means that the

cardinality |Σ ∩ (X× {�})| is either 1, if Σ has a member

with label �, or 0 otherwise. Consequently, the expectation

E[|Σ ∩ (X× {�})|] (i.e., the total attribute PHD mass of �)
cannot exceed 1. Hence, the existence probability of � and its

attribute (probability) density, in an LRFS Σ, are given by

rΣ(�) =

∫
vΣ(x, �)dx, pΣ (·, �) = vΣ(·, �)/rΣ(�). (17)

Remark 3. It is imperative to note that rΣ (�) �= wΣ({�}) and

pΣ (x, �) �= πΣ|�(x). Whereas wΣ({�}) is the joint probability

that (only) � exists and the other labels do not, rΣ (�) is the

marginal probability that � exists regardless of other labels.

Similarly, πΣ|�(·) is the attribute density given that only �
exists, whereas pΣ (·, �) is the attribute density given that �
exists regardless of others. The marginal nature of rΣ (�) and

pΣ (x, �) can be seen from the definition of the PHD vΣ(x, �).

The PHD (of LRFS) offers inexpensive sub-optimal JoM

and MaM estimates. The sub-optimal JoM estimator seeks

the labels with existence probabilities above a prescribed

threshold, and estimates their attributes from the correspond-

ing attribute densities (via the modes/means). This estimate

depends on the existence threshold similar to the constant c
in the JoM estimate. The sub-optimal MaM estimator seeks

the most probable cardinality n∗ (either from ρΣ, if available,

or from the multi-Bernoulli cardinality approximation using

the existence probabilities), and the n∗ labels with highest

existence probabilities, whose attributes are then estimated

from their attribute densities. The PHD also offers a tractable

sub-optimal label-MaM estimate, see Subsection IV-C.

B. Labeled I.I.D. Cluster

Analogous to its unlabeled counterpart, a labeled i.i.d.
cluster Σ is an LRFS characterized by a cardinality distri-

bution ρΣ and an attribute probability density fΣ (on X) [11].

Conditioned on cardinality n, the n (not necessarily distinct)

attributes i.i.d. according to fΣ, are marked with distinct labels

from L(n) � {αi : i = 1:n}. A labeled i.i.d. cluster has multi-

object density and PGFl [11], [17, pp. 450]

πΣ (X) = δL(|X|)[L(X)]ρΣ(|L(X)|) (fΣ ◦ A)
X

,

GΣ[h] =

∞∑
n=0

ρΣ(n)
∏

�∈L(n)

〈fΣ,h(·, �)〉,

respectively, for any unitless test function h on X×L, where

◦ denotes composition. It is clear from the above descriptors

that a labeled i.i.d. cluster is not an i.i.d. cluster. The PHD of

a labeled i.i.d. cluster is given by [17, pp. 451]

vΣ(x, �) = fΣ(x)

∞∑
n=0

1L(n)(�)ρΣ(n).

The sum over n is the existence probability of �, and fΣ is

its attribute density (independent of �). The labeled Poisson
is the special case with Poisson cardinality distribution. Note

that a labeled Poisson RFS is not a Poisson RFS of X× L.

C. Labeled Multi-Bernoulli

Similar to a multi-Bernoulli, a labeled multi-Bernoulli
(LMB) is an LRFS characterized by a collection of indepen-

dent Bernoulli RFSs (of the attribute space X) with param-

eters {(r(ζ), p(ζ)) : ζ ∈Ψ}, and additionally, a 1-1 (injective)

mapping σ :L → Ψ that pairs each ζ ∈ Ψ with a distinct

label � ∈ L [11]. For each ζ ∈ Ψ, a labeled Bernoulli RFS

is constructed by marking the Bernoulli RFS parameterized

by (r(ζ), p(ζ)) with the associated label � = σ-1(ζ). The

resulting labeled Bernoulli RFSs are disjoint (due to their

distinct labels), and their union is an LMB Σ, whose multi-

object density is given by [11]

πΣ (X) = Δ(X)
[
1D(σ)

]L(X)
[πΣ(X; ·)]Ψ , (18)

where D(σ) is the domain of σ, and

πΣ(X; ζ) =
∑

(x,�)∈X

δσ(�)[ζ]r
(ζ)p(ζ)(x)+(1−δσ(�)[ζ])(1−r(ζ)).

The above sum either takes on: r(ζ)p(ζ)(x) if ζ matches the

label of (x, �) ∈ X , i.e.,
(
x, σ-1(ζ)

)
∈ X; or 1 − r(ζ) if ζ

is not matched with any labels in L (X), i.e., ζ /∈ σ(L (X)).
Hence, it can be written in piece-wise form

πΣ(X; ζ) =

{
r(ζ)p(ζ)(x), if

(
x, σ-1(ζ)

)
∈ X

1− r(ζ), if ζ /∈ σ(L (X))
.

The cardinality distribution of an LMB is given by (10).

An LMB is parameterized by the existence probability

rΣ(�) � 1D(σ)(�)r
(σ(�)), and attribute density pΣ(·, �) �
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p(σ(�)) of each � ∈ D(σ). Indeed, its PGFl and multi-object

density can be expressed as follows [17, pp. 456], [11]

GΣ[h] =
∏

�∈D(σ)

(1− rΣ(�) + rΣ(�)〈pΣ(·, �),h(·, �)〉), (19)

πΣ(X) = Δ(X) [1− rΣ]
D(σ)-L(X)

r
L(X)
Σ pXΣ . (20)

Note that
∑

L⊆L
[1− rΣ]

D(σ)-L
rLΣ = 1 [17, pp. 454], and

hence πΣ integrates to 1. For brevity, we write the LMB multi-

object density πΣ as {(rΣ(�), pΣ(·, �))}�∈D(σ). An LMB

permits elements with the same attributes, and unmarking it

only yields a multi-Bernoulli if the attributes are distinct.

Interestingly, much like the Poissons and Bernoullis’ (both

unlabeled and labeled), the PHD of an LMB [17, pp. 457]

vΣ(x, �) = rΣ(�)pΣ(x, �),

also provides a complete characterization, since rΣ(�) and

pΣ(·, �) can be recovered from the PHD via (17). Indeed,

assuming rΣ(�) ∈ [0, 1) and noting that [1− rΣ]
D(σ)

=
[1− rΣ]

L
, πΣ can be written as a multi-object exponential

πΣ(X) = Δ(X) [1− rΣ]
L

[
vΣ

1− rΣ

]X
, (21)

which has the same form (neglecting the distinct label in-

dicator) as the Poisson e-〈vΣ,1〉vXΣ . Consequently, the LMB

shares many analytical properties with the Poisson, and in this

sense, is more “Poisson” than the labeled Poisson. However,

unlike the Poisson, the LMB cardinality variance (which

cannot exceed the mean) can be controlled by the existence

probabilities rΣ(�), � ∈ D(σ), making it more versatile.

Noting that the joint existence probability wΣ(·) of an LMB

is given by [1− rΣ]
D(σ)-L

rLΣ in (20), the LMB admits an

analytic labeled-MaM estimate, with the mode L∗ of wΣ(·)
as the most probable label set, and the modes of pΣ(·, �), � ∈
L∗ as the most probable attributes (provided all the relevant

modes are available). For an arbitrary LRFS, a PHD-based

sub-optimal label-MaM estimate can be obtained by applying

the label-MaM estimator to an approximate LMB constructed

from its PHD.

D. Generalized Labeled Multi-Bernoulli

The labeled i.i.d. cluster and LMB both have tractable multi-

object densities of the form Δ(X)w(L (X))pX . Extending

this form to a mixture accommodates a larger class of LRFS

that provides trade-offs between tractability and versatility. A

Generalized Labeled Multi-Bernoulli (GLMB) Σ is an LRFS

distributed according to such a mixture [10], [11], i.e.,

πΣ (X) = Δ(X)
∑
ξ∈Ξ

w(ξ)(L (X))
[
p(ξ)
]X

, (22)

where Ξ is a discrete set, each p(ξ)(·, �) is a (probability)

density on X, and each w(ξ)(L) is a non-negative weight

that satisfies
∑

ξ∈Ξ

∑
L⊆L

w(ξ)(L) = 1. Intuitively, w(ξ)(L)
can be interpreted as the probability of hypothesis (ξ, L)
representing the ‘event’ ξ and the joint existence of the labels

in L. Conditional on hypothesis (ξ, L), p(ξ)(·, �) is the attribute

(probability) density of object � ∈ L.

Remark 4. Each term of the GLMB density (22) is rather

general, covering a board class of LRFSs including labeled

i.i.d. clusters, LMBs, and their disjoint union (provided their

label sets are disjoint). Thus, the unmarked version of a GLMB

is a general class of non-simple point processes that includes

the Poisson Multi-Bernoulli Mixture [71] as a special case.

The PGFl of a GLMB takes the form [17, pp. 460]

GΣ[h] =
∑
ξ∈Ξ

∑
L⊆L

w(ξ) (L)
∏
�∈L

〈p(ξ)(·, �),h(·, �)〉.

Note that the closed-form void probability functional in [72]

can be obtained by substituting 1−1S into the PGFl. Further,

the cardinality and PHD are given by [11]

ρΣ(n) =
∑
ξ∈Ξ

∑
L⊆L

δn[|L|]w(ξ) (L) ,

vΣ(x, �) =
∑
ξ∈Ξ

p(ξ)(x, �)
∑
L⊆L

1L(�)w
(ξ) (L) .

Hence, the existence probability and attribute density of object

� are [26], [73]

rΣ (�) =
∑
ξ∈Ξ

∑
L⊆L

1L(�)w
(ξ) (L) , (23)

pΣ (x, �) =
1

rΣ (�)

∑
ξ∈Ξ

p(ξ) (x, �)
∑
L⊆L

1L(�)w
(ξ) (L) . (24)

For the label-MaM estimate, the most probable label set of

a GLMB is the mode L∗ of the joint existence probability

wΣ (L) =
∑
ξ∈Ξ

w(ξ) (L) , (25)

(note the distinction between the probability that L exists

regardless of other labels,
∑

ξ∈Ξ

∑
I⊇L w(ξ)(I)). However,

unlike the LMB, finding the mode of the label-conditioned

joint attribute density is not tractable in general. A sub-optimal

strategy is to find the mode/mean of the attribute density

pΣ (·, �), for each � ∈ L∗. Additionally, the structure of the

GLMB suggests a tractable and intuitive sub-optimal version

of the MaM estimate, especially when each ξ corresponds

to an actual probability event. Based on the most probable

cardinality n∗, instead of finding the n∗ most probable states,

the GLMB estimator seeks the most probable hypothesis

(ξ∗, L∗) with |L∗| = n∗, and estimates the attribute of each

� ∈ L∗ from p(ξ
∗) (·, �), via the mode (or mean).

In numerical implementations, it is more convenient to write

the GLMB density in δ-GLMB form

πΣ (X) = Δ(X)
∑

(ξ,I)∈Ξ×F(L)

w(ξ)(I)δI [L(X)]
[
p(ξ)
]X

,

using the identity w(ξ)(L) =
∑

I⊆L
w(ξ)(I)δI [L]. For brevity,

we denote a GLMB density πΣ by the set

{(w(ξ)(I), p(ξ)) : (ξ, I) ∈ Ξ×F(L)} (26)

of its basic components, corresponding to set-functions that

cannot be decomposed as sums of simpler terms. Note that

truncating arbitrary basic components still leaves the resulting

δ-GLMB a valid set-function, and does not suffer from the

non-symmetric problem discussed in Subsection II-C.
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Remark 5. An important feature of the GLMB family is its

closure under the Bayes filtering and posterior recursions [11]

(see Subsections V-C and V-F). Moreover, it is furnished with

convenient mathematical properties that facilitate principled

approximations (see Subsection IV-F).

E. Information Divergence
Analogous to the classical SSM, information divergences

measuring statistical similarities/dissimilarities between RFSs

are fundamental in multi-object SSMs. Well-known diver-

gences such as f -divergences (or Csiszár-Morimoto, Ali-

Silvey) have been extended to RFS [17, pp. 153-160]. This

subsection presents a number of divergences that admit

tractable analytic expressions for certain LRFS models, in-

cluding linear complexity divergences for LMBs, which have

not been previously published.
1) Rényi: The Rényi divergence (Rényi-D) between the

multi-object densities π1 and π2 is given by [17, pp. 156]

DR(π1||π2) =
1

α− 1
ln

∫
πα
1 (X)π1-α

2 (X) δX. (27)

When α = 0.5, DR reduces to the Bhattacharyya distance,

and is related to the squared Hellinger distance.
While the Rényi-D is intractable in general, it admits closed-

forms for (unlabeled) Poissons and LMBs. Indeed, for two

Poissons with PHDs vi, i = 1, 2, i.e., πi(X) = Kiv
X
i , Ki �

e-〈vi,1〉, the Rényi-D is given by [17], [74, pp. 158]

DR(π1||π2) =

〈
vα1 , v

1-α
2

〉
+ ln
(
Kα

1 K
1-α
2

)
α-1

.

For each LMB parameterized by {(ri(�), pi(·, �)) :� ∈ D(σi)},

i = 1, 2, let r̃i � 1 − ri, and fi � ripi/r̃i, so that its multi-

object density has the form2 πi(X) = Δ(X)r̃Li f
X
i . It can

be shown that (see Supplementary Materials for proof and

alternative forms)

DR(π1||π2)=
∑
�∈L

ln
[
1+
〈
fα
1f

1-α
2

〉
(�)
]
+ln
[(
r̃α1 r̃

1-α
2

)
(�)
]

α-1
. (28)

The above expression reduces a series of high-dimensional

integrals to a series of integrals on the attribute space X. The

sum over L is, in fact, only a sum over the union D(σ1) ∪
D(σ2) ⊂ L. Outside this union, the existence probabilities

r1(�) and r2(�) are zero, which means
(
r̃α1 r̃

1-α
2

)
(�) = 1, and

has no contribution to DR(π1||π2). Moreover,
〈
fα
1 f

1-α
2

〉
(�)

only contributes to DR(π1||π2) on the intersection D(σ1) ∩
D(σ2), where both r1(�) and r2(�) are non-zero.

2) Kullback-Leibler: The limiting case of the Rényi-D

when α tends to 1 is the Kullback-Leibler divergence (KL-
D), given by [17, pp. 155] (with 0 ln 0 = 0 by convention)

DKL(π1||π2) =

∫
π1 (X) ln

π1 (X)

π2 (X)
δX. (29)

Similar to the Rényi-D, the KL-D is computationally in-

tractable in general, but admits closed-forms for Poissons and

LMBs. Indeed, the KL-D for Poissons [17, pp. 157]

DKL(π1||π2) = ln
K1

K2
+

〈
v1, ln

v1
v2

〉
,

2We implicitly assume ri(�) ∈ [0, 1) to illustrate the similarities between
LMBs and Poissons. To include ri(�) = 1, we need to use the form (20).

resembles that for LMBs [75]

DKL(π1||π2) =
∑
�∈L

[
ln
r̃1(�)

r̃2(�)
+ r̃1(�)

〈
f1ln

f1
f2

〉
(�)

]
, (30)

(see Supplementary Materials for proof and alternative forms).

Note that the differential entropy for LMBs derived in [76]

follows from the above expression by setting π2(X) to

Δ(X)U-|X|, where U is the unit of hyper-volume.
3) Chi-squared: Similar to Rényi-D and KL-D, the Chi-

squared divergence (χ2-D), given by [17, pp. 155]

Dχ2(π1||π2) =

∫
π2
1 (X)

π2 (X)
δX − 1, (31)

belongs to the general class of f -divergences that extends

to RFS simply by replacing standard density/integration with

FISST density/integration. The χ2-D is a 2nd-order Taylor’s

series approximation of the KL-D, and together with the

squared Hellinger distance, provides respectively, the upper

and lower bounds for the KL-D [77].

For LMBs, the χ2-D admits the following closed-form

Dχ2(π1||π2) =
∏
�∈L

r̃21(�)

r̃2(�)

[
1 +

〈
f2
1

f2

〉
(�)

]
− 1 (32)

(see Supplementary Materials for proof and alternative forms),

which incurs similar computational complexity to those of

Rényi-D and KL-D. Note that only � ∈ D(σ1) ∪ D(σ2)
contributes to Dχ2(π1||π2), because outside this union r̃1 and

r̃2 become unity whilst f2
1/f2 vanishes (using the convention

02/0 = 0). Like the Rényi-D and KL-D, the χ2-D for LMBs

bears some resemblance to that for Poissons [17, pp. 157]

Dχ2(π1||π2) =
K2

1

K2
e〈v2

1/v2,1〉 − 1.

4) Cauchy-Schwarz: Unlike the f -divergences, the Cauchy-
Schwarz divergence (CS-D) cannot be extended to RFS

by replacing standard density/integration with FISST den-

sity/integration due to incompatibility with the unit of mea-

surements [78]. Consequently, extension to RFS is accom-

plished using density/integration w.r.t. the Poisson measure.

Nonetheless, using their equivalence with the FISST den-

sity/integral, the CS-D can be expressed as [78]

DCS(π1, π2) = − ln

∫
U |X|π1(X)π2(X)δX√∫

U |X|π2
1(X)δX

∫
U |X|π2

2(X)δX
, (33)

where U is the unit of hyper-volume in X (the factor U |X|

ensures that all constituent integrals of the set integrals are

dimensionless). It can also be interpreted as an approximation

to the KL-D [79]. Note that the CS-D between the square roots

of the multi-object densities is the Bhattacharyya distance

(Rényi-D with α = 0.5).

Geometrically, the dissimilarity between π1 and π2, accord-

ing to the CS-D, is based on the angle they subtend in the

space of square integrable functions (via the Cauchy-Schwarz

inequality). Hence, the CS-D is symmetric, and invariant to

the choice of hyper-volume unit U . For Poissons with PHDs

v1 and v2, the CS-D simply reduces to [78]

DCS(π1, π2) =
U

2
‖v1 − v2‖2 ,



PREPRINT: VO et. al., An Overview of Multi-Object Estimation via Labeled Random Finite Set, IEEE TRANS. SIGNAL PROCESSING, 72:4888-4917, 2024. 13

where ‖f‖2 � 〈f, f〉 denotes the squared L2-norm. This

means the angle subtended by π1 and π2 translates to the

squared L2-distance between their PHDs.

The versatility of the CS-D in multi-object system lies in

the tractable closed-form for the broader GLMB family, which

includes LMBs and labeled i.i.d. clusters. Specifically, for

πi = {(w(ξi)
i (I), p

(ξi)
i ) : (ξi, I) ∈ Ξi × F(L)}, i = 1, 2, the

CS-D is given by [72]

DCS (π1,π2) = − ln
〈π1,π2〉U√

〈π1,π1〉U
√
〈π2,π2〉U

, (34)

where

〈πi,πj〉U =
∑
L⊆L

∑
ξi∈Ξi

∑
ξj∈Ξj

w
(ξi)
i (L)w

(ξj)
j (L)

〈
Up

(ξi)
i p

(ξj)
j

〉L
.

The above expression involves summing over all label sets

L ⊆ L, though only those with non-zero w
(ξi)
i (L), w

(ξj)
j (L)

and
〈
Up

(ξi)
i p

(ξj)
j

〉
(�), for all � ∈ L, contribute to the sum.

For the LMB special case, the CS-D (34) reduces to a sum

of logarithms over � ∈ L, similar to the Rényi-D. Specifically,

it can be shown that (see Supplementary Materials)

DCS(π1,π2) = −
∑
�∈L

ln
1+ 〈Uf1f2〉(�)√

1+
〈
Uf2

1

〉
(�)
√
1+
〈
Uf2

2

〉
(�)

, (35)

though we only need to sum over the union D(σ1)∪D(σ2) of

the LMB parameter domains, for the same reason as per the

Rényi. Unlike Rényi-D, KL-D, and χ2-D, the CS-D for LMBs

bears little resemblance to that for Poissons. Note that the CS-

D for labeled i.i.d. clusters is more expensive than LMBs, even

though both are one-term special cases of the GLMB.

F. Labeled RFS Approximations

While approximations are indispensable for real-world ap-

plications, what differentiates heuristics from principled en-

gineering practice is whether the approximation error can be

characterized/quantified. The GLMB is an analytic solution

to the multi-object Bayes filter that provides trajectory es-

timation, and is closed under truncation with analytic error

characterization [26]. Moreover, the GLMBs also provide

principled approximations to other LRFSs, thus, hitting many

birds with one stone. This subsection presents a number of

results for LRFS approximations based on GLMBs.

1) Truncation of GLMBs: This is a crucial task in practice,

where GLMBs consist of intractably large sums. The key

consideration of ensuring validity of the truncated expression

as a set-function, discussed in Subsection II-C, is automatically

fulfilled (see Subsection IV-D). Moreover, the truncation error

can be quantified analytically, similar to that for Fourier series.

For any H ⊆ Ξ× F(L), let π(H) denote the unnormalized

GLMB {(w(ξ)(L), p(ξ)) : (ξ, L) ∈ H} (i.e., does not necessar-

ily integrate to 1). Then, the normalizing constant is∫
π(H)(X)δX = ||π(H)||1 =

∑
(ξ,L)∈H

w(ξ)(L),

where ‖f ‖1 �
∫
|f (X)| δX denotes the L1-norm of a

function f on F(X×L). Moreover, the L1-error between π(H)

and its truncated version π(T) is given by [26]

||π(H) − π(T)||1=
∑

(ξ,L)∈H−T

w(ξ)(L), (36)

(it is implicit that T ⊆ H), and for their normalized versions∥∥∥∥ π(H)

||π(H)||1
− π(T)

||π(T)||1

∥∥∥∥
1

≤ 2
||π(H)||1 − ||π(T)||1

||π(H)||1
. (37)

The above result means that the intuitive strategy of dis-

carding basic GLMB components with the smallest weights

minimizes the L1-error between the actual and approximate

multi-object densities. Similar truncations are widely used

in MOT algorithms such as MHT, and JPDA, but without

mathematical justifications. The LRFS approach characterizes

the effect of truncation by the L1-error, and provides a mathe-

matical justification for truncating low-weighted components.

2) Label-Partitioned GLMB Approximation: A ‘large’

GLMB can be approximated, via label partitioning, as a

product of much ‘smaller’ GLMBs that can be processed more

efficiently in parallel [27]. The rationale is that such approx-

imations incur minimal information loss when the smaller

GLMBs are almost independent, which is usually the case in

practice since the objects are not uniformly distributed across

the state space, but often in separate groups.

Given a partition L of the label space L, each X ∈
F (X× L) can be written as X =

⊎
L∈L X ∩ (X× L),

and hence {F (X× L) : L ∈ L} also forms a partition of

F (X× L). A labeled multi-object density on F(X × L) is

said to be L-partitioned if it can be written as the product

πL (X) =
∏
L∈L

π
(L)
L (X ∩ (X× L)) ,

where each factor π
(L)
L is a labeled multi-object density on

F(X×L) [27]. We denote πL, by its factors {π(L)
L }L∈L, and if

each factor π
(L)
L is a GLMB {(w(I,ξ)

L,L , p
(ξ)
L,L)}(I,ξ)∈F(L)×Ξ(L) ,

then πL is said to be an L-partitioned GLMB.

An important numerical problem is to approximate a given

L-partitioned GLMB πL = {π(L)
L }L∈L using another partition

S of L. Indeed, the S-partitioned labeled multi-object density

πS = {π(S)
S }S∈S that minimizes DKL (πL||πS), is an S-

partitioned GLMB, with GLMB factors [27]

π
(S)
S (X ∩ (X× S)) =

∏
L∈L

π
(L,S)
L,S (X ∩ (X× S)),

where, for each (L, S) ∈ L×S such that L ∩ S �= ∅

π
(L,S)
L,S = {(w(H,ξ)

L,S , p
(ξ)
L,S)}(H,ξ)∈F(L∩S)×Ξ(L) ,

w
(H,ξ)
L,S =

∑
W∈F(L-S)

w
(H∪W,ξ)
L,L ,

p
(ξ)
L,S(x, �) = 1L∩S(�)p

(ξ)
L,L(x, �).

An efficient algorithm for finding the ‘best’ partitions suitable

for large-scale multi-object estimation can be found in [27].
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3) Approximation by GLMB: Estimation involving non-

standard multi-object models invariably results in intractable

multi-object densities, see e.g., [70], [80]–[87]. Hence, it

is important to make principled approximations by tractable

families such as GLMBs. Apart from statistical approxima-

tion techniques such as moment matching and information

minimization, approximating the cardinality distribution is an

important consideration in multi-object estimation [16].

An LRFS, characterized by a multi-object density π, can

be approximated by an LMB with matching 1st moment

(PHD), by choosing the parameters according to (17). Indeed,

this technique was first used in [73] to approximate GLMBs

with LMBs by selecting the parameters according to (23),

(24). However, LMBs are not versatile enough to match the

cardinality or capture the dependence between the attributes of

the multi-object state. To this end, approximation by GLMBs

can provide trade-offs between tractability and versatility.

A Marginalized-GLMB (M-GLMB) is a GLMB with density

of the form [70], [88], [89]

π̄(X) = Δ(X)
∑
L⊆L

w̄(L)δL[L(X)]
[
p̄(L)
]X

. (38)

Using a smaller number of components, an M-GLMB can

approximate a GLMB {(w(ξ)(I), p(ξ)) : (ξ, I) ∈ Ξ × F(L)}
with matching PHD and cardinality, by choosing [88]

w̄(L) =
∑
ξ∈Ξ

w(ξ)(L),

p̄(L)(x) =
1L(L(x))

w̄(L)

∑
ξ∈Ξ

w(ξ)(L)p(ξ)(x).

For a labeled multi-object density π, the M-GLMB that

matches the PHD and cardinality whilst minimizing the KL-

D from π has components given by [70]

w̄(L) = 〈π〉(L), (39)

p̄(L)(x) =
1L(L(x))
〈π〉(L) 〈π({x} � ·)〉(L− {L(x)}). (40)

Thus, to match the PHD and cardinality of a labeled multi-

object density π by an M-GLMB, we set each weight w̄(L) to

the joint existence probability 〈π〉(L), and the p̄({�1:n})(·, �i)’s
to the marginals of the label-conditioned joint attribute den-

sities π({(·, �1), ..., (·, �n)})/〈π〉({�1:n}). This approximation

minimizes the KL-D in a similar way to the approximation of

a joint density by the product of its marginals [90].

In certain applications, e.g., [80], [83], [85]–[87], the labeled

multi-object density of interest takes on a multi-modal form

similar to a GLMB:

π(X) = Δ(X)
∑
ξ∈Ξ

w(ξ)(L(X))p(ξ)(X), (41)

where each ξ represents a mode,
∑

ξ∈Ξ

∑
L⊆L

w(ξ)(L) = 1,

and
〈
p(ξ)
〉
(I) = 1. The M-GLMB approximation cannot cap-

ture the modes and the associated information. Nonetheless,

the cardinality and PHD matching strategy can be applied to

each of the modes [70]. Specifically, a GLMB that matches

Fig. 10: A multi-object trajectory X0:k on the interval {0:k}.

Individual trajectories are determined by grouping the states

of X0:k according to labels (depicted by the different colors).

This representation covers trajectory fragmentation (e.g., at

time 4) and crossing (e.g., at time 3).

the PHD and cardinality whilst preserving the modes of (41)

is given by π̂ = {(ŵ(ξ,I), p̂(ξ,I)) : (ξ, I) ∈ Ξ×F(L)}, where

ŵ(ξ,I) = w(ξ)(I), (42)

p̂(ξ,I)(x) = 1I(L(x))
〈
p(ξ)({x} � ·)

〉
(I − {L(x)}). (43)

While this approximation requires many more components

than the M-GLMB approximation, intuitively, it incurs less

information loss, by retaining the information contained in the

modes. However, there are no formal results on the KL-D.

G. Spatio-Temporal Modeling and Multi-Scan GLMB

So far, we have only discussed modeling of the multi-object

state via LRFS. This subsection extends the discussion to

multi-object trajectory modeling. In particular, we present an

extension of the GLMB, known as the multi-scan GLMB, as

a tractable LRFS model of the multi-object trajectory.

Recall that the multi-object trajectory on an interval {j:k}
is the sequence Xj:k of labeled multi-object states, and that

trajectories in Xj:k are determined by grouping the states

according to labels, see Fig. 10. More concisely, the trajectory

of each (object with label) � ∈ L(Xj:k)
3 is the time-stamped

sequence x
(�)
T (�) = [(xi, �) ∈ Xi]i∈T (�), where T (�) is the set

of instants in {j :k} such that � exists. This sequence, defines

the mapping τ� : i �→ xi, i ∈ T (�). It is clear that Xj:k can

be reconstructed from all the trajectories in Xj:k, and hence

is equivalently represented as the set of labeled trajectories

Xj:k ≡
{
x
(�)
T (�) : � ∈ L(Xj:k)

}
. (44)

Since the multi-object trajectory on {j:k} is represented

by a sequence of labeled multi-object states, it is naturally

modeled as a sequence Σj:k of LRFSs described by a joint

LRFS density πΣj:k
. Beyond multi-object trajectory modeling,

statistical characterization of variables/parameters pertaining

to the underlying multi-object trajectory ensemble can be

computed from the joint LRFS density [91]. Suppose that

3Strictly speaking L(Xj:k) = (L(Xj), ...,L(Xk)) and we should write

� ∈ ∪k
i=jL(Xi). Nonetheless, the notation � ∈ L(Xj:k) is more compact,

and also suggestive (that � belongs to any of the sets L(Xj), ..., L(Xk)).
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f(Xj:k) is the statistic of a multi-object trajectory Xj:k, then

the ensemble statistic is the expectation

EΣj:k
[f ] =

∫
...

∫
f(Xj:k)πΣj:k

(Xj:k)δXj ...δXk.

Fig. 11 shows some examples of multi-object trajectory statis-

tics. More examples can be found in [91].

1) Multi-Scan Multi-Object Exponential: The basic build-

ing block for a multi-scan GLMB is a multi-scan version of

the multi-object exponential. Noting that hX is the product

of the values of the function h at every state in X , a natural

multi-scan extension to hXj:k is the product of the values of

h at every trajectory in Xj:k. More concisely, the multi-scan
multi-object exponential is defined as [91]

hXj:k � h
{x(�)

T (�)
:�∈L(Xj:k)} =

∏
�∈L(Xj:k)

h(x
(�)
T (�)), (45)

for any real function h on
⊎

I⊆{j:k}TI , where

T{i1,i2,...,in} �
∏
× n
j=1

(
X× Lij

)
,
∏
× k
i=jSi � Sj×...×Sk,

for i1 < i2 < ... < in ∈ {j:k}. If x
(�)
T (�) = [(xi, �)]i∈T (�), we

write h(x
(�)
T (�)) as h(xT (�); �), and if the trajectory is unfrag-

mented, i.e., T (�) = {s(�) : t(�)}, where s(�) � minT (�),

t(�) � maxT (�), we write h(x
(�)
T (�)) as h(xs(�):t(�); �).

The multi-scan multi-object exponential (45) satisfies the

exponential-like property:

[gh]
Xj:k = [g]

Xj:k [h]
Xj:k ,

where g is another function on
⊎
I⊆{j:k}TI , see [91] for

additional properties. When j = k, (45) reduces to the single-

scan multi-object exponential hXj .

2) Multi-Scan GLMB: This model was proposed in [91] for

smoothing under the standard multi-object system model that

only permits unfragmented trajectories. A multi-scan GLMB
on the interval {j:k} is a sequence Σj:k of LRFSs described

by a joint multi-object density on
∏
× k
i=jF(X× Li) of the form

πΣj:k
(Xj:k) = Δ(Xj:k)

∑
ξ∈Ξ

w(ξ)(L(Xj:k))[p
(ξ)]Xj:k , (46)

where: Δ(Xj:k) �
∏k

i=jΔ(Xi); w(ξ)(Ij:k) is non-negative

such that
∑

ξ,Ij:k
w(ξ)(Ij:k) = 1 (it is understood that the

sum is taken over ξ ∈ Ξ and Ij:k ∈ ∏× k
i=jF(Li)); L(Xj:k)=

(L(Xj), ...,L(Xk)); and p(ξ)(xs(�):t(�); �) is a joint density

of the attribute sequence xs(�):t(�), for each � ∈ Ij:k, with

s(�), t(�) implicitly depend on (ξ, Ij:k). The joint density (46)

indeed integrates to 1 [91]. Similar to the GLMB, the multi-

scan GLMB (46) can also be written in delta form

πΣj:k
(Xj:k) = Δ(Xj:k)

∑
ξ,Ij:k

w(ξ,Ij:k)δIj:k[L(Xj:k)][p
(ξ)]Xj:k ,

and denoted by πΣj:k
= {(w(ξ)(Ij:k), p

(ξ)):(ξ, Ij:k)}, where

it is understood that ξ ∈ Ξ and Ij:k ∈∏× k
i=jF(Li).

Conceptually, a multi-scan GLMB can be regarded as a

GLMB with the set of labeled states replaced by the set of

labeled trajectories (44). Analogous to the GLMB, w(ξ)(Ij:k)
is the probability of hypothesis (ξ, Ij:k) representing the

‘event’ ξ and the joint existence of the trajectories according to

Fig. 11: Multi-object trajectory statistics in a retail store with

15 aisles and 2 entrances. Computed from a hypothetical joint

LRFS density of a 1-day scenario: (a) distribution of customer

numbers in the store; (b) distribution of the time customers

spend in the store given the entrance they use; (c) probability

that certain customers move together (within 2m of each other)

over time; (d) location intensity of customers who spend less

than 60 minutes in the store.

the sequence Ij:k of label sets, and conditional on hypothesis

(ξ, Ij:k), p
(ξ)(·, �) is the attribute density of trajectory � ∈ Ij:k.

The multi-scan GLMB is closed under the Bayes posterior

recursion as well as truncation. Indeed, the error expressions

(36), (37) also hold for multi-scan GLMBs [91].

Some closed-form multi-object statistics from the multi-

scan GLMB are given as follows (see [91] for further details).

• Trajectory cardinality distribution over interval {j:k}:

Pr(|Xj:k| = n) =
∑
ξ,Ij:k

δ|∪k
i=jIi|[n]w

(ξ)(Ij:k). (47)

• Joint existence probability of only the labels in L (and

no other labels exist) over interval {j:k}:

Pr(only L exist) =
∑
ξ,Ij:k

δ∪k
i=jIi

[L]w(ξ)(Ij:k). (48)

• Joint existence probability of the labels in L regardless

of other labels, over interval {j:k}:

Pr(L exist) =
∑
ξ,Ij:k

1F(∪k
i=jIi)

(L)w(ξ)(Ij:k). (49)

• Trajectory length distribution, i.e., the probability that a

trajectory has length n, over interval {j:k}:

Λ(n) =
∑
ξ,Ij:k

∑
�∈∪k

i=jIi
δt(�)-s(�)+1[n]∣∣∪k
i=jIi

∣∣ w(ξ)(Ij:k). (50)

• Length distribution of trajectory �, i.e., the probability

that trajectory � has length n, over interval {j:k}:

Λ�(n) =
∑
ξ,Ij:k

1∪k
i=jIi

(�)δt(�)-s(�)+1[n]w
(ξ)(Ij:k). (51)
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3) Multi-Scan GLMB Estimator: Various GLMB estimators

can be extended to multi-scan GLMB. The simplest would be

to find the most probable hypothesis (ξ∗, I∗j:k) (with highest

weight w(ξ∗)(I∗j:k)) and compute the most probable or ex-

pected trajectory estimate from p(ξ
∗)(·; �) for each � in I∗j:k.

Alternatively, instead of the most significant, we can use the

most significant among components with the most probable

trajectory cardinality n∗ determined by maximizing (47).

The label-MaM estimate can also be adapted for multi-

scan GLMB, using the most probable label set sequence I∗j:k,

determined by maximizing
∑

ξ w
(ξ)(Ij:k), and computing the

trajectory density for each � in I∗j:k

p(·; �) ∝
∑
ξ

w(ξ)(I∗j:k)p
(ξ)(·; �),

from which the mode or mean trajectory can then be deter-

mined. One variation is to choose I∗j:k as the most probable

label set sequence with trajectory cardinality n∗.

Another adaptation of the label-MaM estimate is based on

the most probable set of labels L∗, determined by maximizing

the joint existence probability (48). However, for each � ∈ L∗,

its trajectory length for different hypotheses (ξ, Ij:k) (that

yield the same L∗) may not be the same, and hence there is no

meaningful most probable trajectory (due to different units of

measurements in the probability densities of the trajectories).

Nonetheless, we can determine the most probable length m∗

for each � ∈ L∗, by maximizing (51), and estimate the

trajectory according to

pm∗(·; �) ∝
∑
ξ,Ij:k

1⋃k
i=jIi

(�)w(ξ)(Ij:k)δt(�)-s(�)+1[m
∗] p(ξ)(·; �).

Variations of this estimator are to use the label set L∗ of

cardinality n∗ with highest joint existence probability, or the

set of n∗ labels with highest individual existence probabilities.

V. DYNAMIC MULTI-OBJECT ESTIMATION

The apparatus developed in the previous sections enables

classical SSM concepts to be applied to multi-object state

estimation, as shown in this section. Bayesian estimation for

multi-object SSM is formulated in Subsection V-A, while

Subsection V-B presents the standard multi-object SSM. An

exact solution to the Bayes multi-object filter using GLMB,

and an approximate solution using LMB, are presented in Sub-

sections V-C and V-D, while numerical implementations are

discussed in Subsection V-E. Extension of the GLMB filter to

multi-object smoothing is presented in Subsection V-F, while

Subsection V-G discusses its implementation. Extensions to

non-standard models, robust and distributed estimation, and

control for multi-object system are discussed in Subsections

V-H, V-I, V-J, and V-K.

A. Multi-Object State Space Model

Recall that a label � = (s, ι) consists of the starting time s
and an index ι, let Bk denote the space of labels with starting

time k. Then, the label space and labeled state space at time k
are, respectively, the disjoint union Lk =

⊎k
t=0 Bt and X×Lk.

TABLE IV: Common notations from Section V.

Notation Description
Bk Space of labels (of objects) born at time k

Lk

⊎k
t=0 Bt, label space at time k

Xk Multi-object state at time k

Zk Multi-object measurement at time k

fk(·|Xk-1) Multi-object transition density given Xk-1

gk(Zk|Xk) Likelihood of observing Zk given Xk

π0:k(X0:k) Multi-object posterior density at X0:k

πk(Xk) Multi-object filtering density at Xk

fB,k Density of LRFS of new objects at time k

PB,k(�) Birth probability of label � at time k

pB(·, �) Attribute density for newborn label � at time k

fS,k(·|Xk-1) Density of LRFS at time k generated by Xk-1

PS,k(xk-1, �) Survival probability to time k of state (xk-1, �)

fS,k(·|·, �) Attribute transition density to time k for �

PD,k(x) Detection probability of state x at time k

κk Clutter intensity function at time k

Ψ
(j)
Z,k(x) 1{1:|Z|}(j)

PD,k(x)gk(zj |x)

κk(zj)
+δ0[j](1-PD,k(x))

Λ
(j)
S,k(x|ς, �) Ψ

(j)
Z,k(x, �)fS,k(x|ς, �)PS,k(ς, �)

Λ
(j)
B,k(x, �) Ψ

(j)
Z,k(x, �)pB,k(x, �)PB,k(�)

θ, θk Association map Lk → {0 : |Zk|} at time k

Θ(I),Θk(I) Space of association maps θk with domain I

(ξ, I) Prior GLMB component

(ξ, θ, I) Updated GLMB component

γ, γk Extended association Ik-1 � Bk→{−1: |Zk|}
Γ,Γk Space of extended associations at time k

P, Pk Number of (hypothesized) labels at time k

M,Mk Number of measurements at time k

Analogous to traditional SSMs, the multi-object state Xk ∈
F(X×Lk), at time k, evolves from its previous value Xk-1 ∈
F(X× Lk-1), and generates an observation Zk ∈ F(Z),
according to the multi-object state and observation equations

Xk = Sk(Xk-1) ∪Bk, (52)

Zk = Dk(Xk) ∪Kk, (53)

where Sk(Xk-1) is the set of states generated from Xk-1,

Bk is the set of newly appearing states, Dk(Xk) is the set

of detections generated from Xk, and Kk is the set of clutter,

(or false alarms).

Under the Bayesian paradigm, the multi-object state and

observation are modeled as RFSs. Using the FISST notion

of multi-object density, the multi-object state and observation

equations (52), (53) can be characterized, respectively, by

the multi-object (Markov) transition density and multi-object
(observation) likelihood function [9], [68]

fk(Xk|Xk-1), gk(Zk|Xk).

The transition density fk(·|·) captures the underlying evolu-

tion, appearance and disappearance of the objects. The obser-

vation likelihood gk(·|·) captures the underlying detections,

false negatives/positives and data association uncertainty. Ex-

amples of fk(·|·) and gk(·|·) are given in the standard (com-

monly used) SSM presented in Subsection V-B.
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Given the observation history Z1:k, all information on the

multi-object trajectory is captured in the multi-object posterior
density π0:k(X0:k) � π0:k(X0:k|Z1:k) (the dependence on

Z1:k is omitted for brevity). Similar to Bayesian estimation

for traditional SSMs [34], [37], the (multi-object) posterior

density can be propagated forward recursively by [91],

π0:k(X0:k) = (54)

gk(Zk|Xk)fk(Xk|Xk-1)π0:k-1(X0:k-1)∫
gk(Zk|Y k)fk(Xk|Y k-1)π0:k-1(Y 0:k-1)δY 0:k

.

Since the dimension of π0:k increases with k, the computa-

tional complexity for each iterate of (54), which is a function

of the dimension, grows with time. This growth is far worse

than its single-object counterpart because the multi-object state

space F(X× Lk) is far larger than the state space X.

A cheaper alternative is the multi-object filtering density,

πk(Xk) �
∫
π0:k(X0:k)δX0:k-1, which can be propagated

by the multi-object Bayes filter [17], [68]

πk(Xk) =
gk(Zk|Xk)

∫
fk(Xk|Y )πk-1(Y )δY∫

gk(Zk|X)
∫
fk(X|Y )πk-1(Y )δY δX

. (55)

Similar to the single-object Bayes filter, the computational

complexity for each iterate of (55) does not increase with time

since the dimension of πk does not grow with k.

Under the standard multi-object model (to be discussed

next), numerical solutions to the posterior and filtering recur-

sions were first developed at around the same time, respec-

tively, in [92], [93] using particle marginal Metropolis-Hasting

simulation, and in [10], [11] using GLMBs. The latter is an

analytic solution, and was later extended to solve the posterior

recursion in [91], [94] (see Subsections V-C, and V-F).

B. Standard Multi-Object Model

1) Multi-Object State Dynamic: Let fB,kdenote the density

of the LRFS Bk of new objects, and fS,k(·|Xk-1) the density

of the LRFS Sk(Xk-1) of objects generated from the previous

multi-object state Xk-1. Assuming Sk(Xk-1) and Bk are

independent, due to the labeling construct, the multi-object

transition density is given by [11]

fk(Xk|Xk-1) = (56)

fB,k(Xk ∩ (X× Bk))fS,k(Xk ∩ (X× Lk-1)|Xk-1).

In the standard (commonly used) multi-object dynamic
model, Bk is a GLMB on F(X × Bk). For simplicity (but

without loss of generality), we use the one-term GLMB

fB,k(X) = Δ(X)wB,k(L(X))pXB,k. (57)

Note that fB,k(X) = 0 if X contains any element with

label outside of Bk. This birth model is general enough to

include labeled i.i.d cluster and LMB, though the latter, given

by fB,k={(PB,k(�), pB,k(·, �))}�∈Bk
, is most popular.

Further, for a given Xk-1, each (xk-1, �) ∈ Xk-1 ei-

ther survives with probability PS,k(xk-1, �) and evolves to

state (xk, �) at time k, with the same label and attribute

transition density fS,k(xk|xk-1, �), or dies with probability

1− PS,k(xk-1). This means objects keep the same labels for

their entire lives. Assuming that conditional on Xk-1 each

object survives and evolves independently of one another,

Sk(Xk-1) is an LMB on F(X × Lk-1), with parameters

{(PS,k(ζ), fS,k(·|ζ))}ζ∈Xk-1 , and density given by [11]

fS,k(X|Xk-1) = Δ(X)1
L(X)
L(Xk-1)

[
fS,k(X; ·)

]Xk-1 , (58)

where 1
L(X)
L(Xk-1)

=
∏

�∈L(X) 1L(Xk-1)(�), and

fS,k(X; y, �) =

{
PS,k(y, �)fS,k(x|y, �), if (x, �) ∈ X

1− PS,k(y, �) , if � /∈ L(X)
. (59)

The standard multi-object transition density only generates

unfragmented trajectories, and is completely characterized by

the model parameters wB,k, pB,k, PS,k, fS,k.

More sophisticated multi-object dynamic models include

spawnings [16], [17], [68], [83], division [87], and interactions

between objects [85], see also Subsection V-H.

2) Multi-Object Observation: At time k, an association
map θ : Lk → {0 : |Zk|} associates the labels of Xk with the

elements of Zk, satisfying the positive 1-1 property that no two
distinct arguments are mapped to the same positive value [11].

Here, θ(�) > 0 means � generates detection zθ(�) ∈ Zk, and

θ(�) = 0 means � is misdetected. The positive 1-1 property

ensures each detection comes from at most one object. The

space of all such association maps is denoted as Θk.

In the standard multi-object observation model, each x ∈
Xk, is either detected with probability PD,k(x) and generates

a detection z with likelihood gk (z|x) or missed with probabil-

ity 1−PD,k(x). Assuming that conditional on Xk detections

are independently generated, the RFS Dk(Xk) of detections is

a multi-Bernoulli with parameters {(PD,k(x), gk(·|x))}x∈Xk
.

Clutter Kk is modeled as a Poisson RFS with intensity κk, and

assumed independent of the detections. The standard multi-

object likelihood function is given by [11]

gk(Zk|Xk) ∝
∑

θ∈Θk(L(Xk))

[
Ψ

(θ◦L(·))
Zk

(·)
]Xk

, (60)

where Θk(I) ⊆ Θk denotes the collection of association maps

with domain I , and

Ψ
(j)
k,Z(x) =

{
PD,k(x)gk(zj |x)

κk(zj)
, j ∈ {1:|Z|}

1− PD,k (x) , j = 0
. (61)

Note that the likelihood function (60) is characterized by the

‘Signal to Noise Ratio’ (SNR) function Ψ
(θ◦L)
k,Z , and does not

suffer from the non-symmetry problem discussed in Subsec-

tion II-C because each of its terms is symmetric in the labeled
states. Hence, truncation before or after multiplication by a

valid prior, still leaves it a valid set function.

The standard multi-object observation model accommo-

dates non-homogeneous clutter and state-dependent detection

probability, covering a broad range of problems. However, it

does not address merged measurements [80], occlusions [86],

extended measurements, superpositional and image measure-

ments [16], [17], which require more sophisticated models.

3) Multi-Sensor Multi-Object Observation: In a multi-

sensor setting with V sensors, each sensor registers an ob-

servation set Z
(v)
k , with (standard) multi-object likelihood

g
(v)
k (Z

(v)
k |Xk), v ∈ {1:V }. Assuming that Z

(1)
k , ..., Z

(V )
k are
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independent conditional on Xk, the multi-sensor multi-object

likelihood function is given by the product [16], [17]

gk(Z
(1)
k , ..., Z

(V )
k |Xk) �

V∏
v=1

g
(v)
k (Z

(v)
k |Xk). (62)

Let Ψ
(v,j(v))

k,Z(v) denote the ‘SNR’ function of sensor v, and

define the multi-sensor SNR function

Ψ
(j(1),...,j(V ))
k,(Z(1),...,Z(V ))

(x) �
V∏

v=1

Ψ
(v,j(v))

k,Z(v) (x) , (63)

the multi-sensor observation Zk � (Z
(1)
k , ..., Z

(V )
k ), the multi-

sensor association map as the V -tuple θ � (θ(1), ..., θ(V ))

of association maps θ(v) ∈ Θ
(v)
k (I) from every sensor, and

Θk(I) �
∏
× V
v=1Θ

(v)
k (I). Then, the multi-sensor multi-object

observation likelihood can be written in the form (60).

4) Relation with Unlabeled Models: Historically, only the

unlabeled multi-object transition density and observation like-

lihood were developed (for multi-object localization).

The unlabeled multi-object transition density fk is given by

the convolution (see (7) with n = 2)

fk(Xk|Xk-1) =
∑

W⊆Xk

fB,k(W ) fS,k(Xk −W |Xk-1),

of the multi-object densities fB,k (of new born objects) and

fS,k(·|Xk-1) (of objects generated from Xk-1) [16]. Without

labeling, the sum over all subsets of Xk does not reduce to a

single term like its labeled counterpart. In the standard multi-

object dynamic model, fS,k(·|Xk-1) is a multi-Bernoulli of

the form (9), which is (algebraically) more complex than the

LMB (58). Further, the multi-Bernoulli model cannot ensure

distinct states (in the transition to time k) necessary for the set

representation of the multi-object state (see Remark 2). The

LRFS formulation avoids such problems.

The standard unlabeled multi-object observation likelihood

gk takes on a nearly identical form to its labeled counterpart

(60), specifically [16, pp. 421]

gk(Zk|{x1:n}) ∝
∑

θ∈Θk({1:n})

n∏
i=1

Ψ
(θ(i))
Zk

(xi),

where Θk({1 : n}) denotes the space of association maps

with domain {1 : n}. The subtle, but important difference is

that gk(Zk|X) cannot be written as a sum of multi-object

exponentials in X . Further, gk(Zk|·) (and hence the unlabeled
multi-object posterior πk(·|Zk) ∝gk(Zk|·)πk(·)) is not closed
under truncation as illustrated in Example 2.

Example 2. Consider a multi-object state {x1, x2}, with

Zk = {z1}, PD = 0.5, and κ = 1. The possible positive

1-1 mappings from {1, 2} to {0, 1} are: [θ(1), θ(2)] = [1, 0]
(x1 detected and x2 undetected); [θ(1), θ(2)] = [0, 1] (x1

undetected and x2 detected); and [θ(1), θ(2)] = [0, 0], (x1

and x2 undetected), hence gk({z1}|{x1, x2}) ∝ gk(z1|x1) +
gk(z1|x2)+1. Truncating gk(z1|x2) yields ĝk({z1}|x1, x2) =
gk(z1|x1) + 1, which is not a function of the set {x1, x2},

because ĝk({z1}|x2, x1) = gk(z1|x2) + 1 �= ĝk({z1}|x1, x2).

Note that the labeled representation avoids this problem be-

cause θ maps the label of each state to the detections, making

each term invariant to the listing order of the states.

C. GLMB Filter

The crux of multi-object estimation lies in the solutions to

the multi-object filtering/posterior recursions. This subsection

presents a GLMB-based analytic solution to the multi-object

Bayes filter (55), under the standard multi-object SSM model

(inclusive of multiple sensors). For convenience, hereon, we

omit references to the time index k, and denote k ± 1, with

subscripts ‘±’, e.g., L− � Lk-1, B� Bk, L� L- ∪ B. Also,

when we write {P (ξ, I-, θ, I) : (ξ, I-, θ, I)}, it is understood

that the variables ξ, I-, θ, and I , respectively, range over the

spaces Ξ, F(L-), Θ, and F(L), unless otherwise stated.

1) Chapman-Kolmogorov Prediction: Suppose that a multi-

object state with density π- � πk-1, at time k− 1, evolves to

the current time k according to a multi-object transition density

f � fk. Then the predicted multi-object density π � πk is

given by the Chapman-Kolmogorov equation

π(X) =

∫
f(X|X-)π-(X-)δX-, (64)

which defines the prediction operator Π : π- �→ π.

In [11], [26], it was established that the GLMB family

is closed under the prediction operator Π with the stan-

dard multi-object transition density f (i.e., model parameters

wB , pB , PS , fS). Specifically, for the GLMB

π- = {(w(ξ)
- (I-), p

(ξ)
- ) : (ξ, I-)}, (65)

the prediction density is the GLMB

π = Π(π-) = {(w(ξ)(I), p(ξ)) : (ξ, I)}, (66)

where

w(ξ)(I) = wB(I ∩ B)w
(ξ)
S (I ∩ L-), (67)

p(ξ)(x, �) = 1B(�)pB(x, �) + 1L-(�)p
(ξ)
S (x, �), (68)

w
(ξ)
S (L) = [P̄

(ξ)
S ]L

∑
I-⊇L

[1− P̄
(ξ)
S ]I--Lw(ξ)

- (I-), (69)

p
(ξ)
S (x, �) =

〈
p(ξ)- (·)fS(x|·)PS(·)

〉
(�)/P̄

(ξ)
S (�), (70)

P̄
(ξ)
S (�) =

〈
PS p(ξ)-

〉
(�). (71)

The prior GLMB components (ξ, I-) generate the predicted

components (ξ, I). The predicted weight w(ξ)(I) of (ξ, I) is

the product of the birth weight for new objects with labels in

I , and the survival weight for old objects with labels in I . The

predicted attribute density p(ξ)(·, �) is either the birth attribute

density for a new object with label �, or the predicted attribute

density for a surviving object with label �.
2) Bayes Update: Suppose that a multi-object state with

prior density π generates an observation Z according to a

multi-object observation likelihood g(Z|X) � gk(Z|X).
Then, the multi-object posterior density is given by Bayes rule

π(X|Z) =
g(Z|X)π(X)∫
g(Z|Y )π(Y )δY

, (72)

which defines the Bayes update operator ΥZ : π �→ π(·|Z).
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In [11], [26], it was established that the GLMB family is

closed under the update operator ΥZ , i.e., a conjugate prior

w.r.t. the standard g(Z|X) (with SNR function Ψ
(θ◦L)
Z and

model parameters κ, PD, g). Specifically, if the prior π is the

GLMB (66), then the posterior is the GLMB

π(·|Z) = ΥZ (π) ∝ {(w(ξ,θ)
Z (I), p

(ξ,θ)
Z ) : (ξ, θ, I)}, (73)

where

w
(ξ,θ)
Z (I) = w(ξ)(I)1Θ(I)(θ)

[
Ψ̄

(ξ,θ(·))
Z (·)

]I
, (74)

p
(ξ,θ)
Z (x, �) = p(ξ)(x, �)Ψ

(θ(�))
Z (x, �)/Ψ̄

(ξ,θ)
Z (�), (75)

Ψ̄
(ξ,j)
Z (�) =

〈
p(ξ)Ψ

(j)
Z

〉
(�). (76)

Note that each prior GLMB component (ξ, I) generates

a series of updated components (ξ, θ, I). Due to the term

1Θ(I)(θ), only components with D(θ) = I are needed. The

weight w
(ξ,θ)
Z (I) of each (ξ, θ, I) is the product of the validity

check for θ, the Bayes evidence from observation Z, and

the prior weight w(ξ)(I). The corresponding attribute density

p
(ξ,θ)
Z (·, �) is simply the Bayes update of the prior attribute with

detection zθ(�) ∈ Z or a misdetection if θ(�) = 0.

3) GLMB Filtering Recursion: The Bayes filtering recur-

sion (55) is the composition of the prediction and update

operators, i.e., ΥZ ◦Π : π- �→ π(·|Z). Hence, for the standard

multi-object SSM, the GLMB family is closed under the Bayes

recursion, i.e., starting with an initial GLMB prior, the multi-

object filtering density at any time is a GLMB [11], [26]. This

result also holds with a GLMB birth model, but for simplicity

in the subsequent discussion, we assume an LMB birth model.

The direct propagation of the GLMB π- in (65) to π(·|Z) in

(73) is given by (see [95])

w
(ξ,θ)
Z (I) ∝

∑
I-⊆L

w
(ξ,I-,θ,I)
Z w(ξ)

- (I-), (77)

p
(ξ,θ)
Z (x, �) ∝

{〈
Λ
(θ(�))
S (x|·)p(ξ)- (·)

〉
(�), � ∈ L-

Λ
(θ(�))
B (x, �), � ∈ B

, (78)

where

w
(ξ,I-,θ,I)
Z = 1F(I-�B)(I)1Θ(I)(θ)

∏
�∈I-�B

η
(ξ,I,�)
Z (θ(�)), (79)

η
(ξ,I,�)
Z (j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1−
〈
PSp

(ξ)
-

〉
(�), � ∈ L-−I∫ 〈

Λ
(j)
S (x|·)p(ξ)- (·)

〉
(�)dx, � ∈ L-∩I

1− PB(�), � ∈ B− I∫
Λ
(j)
B (x, �)dx, � ∈ B ∩ I

, (80)

Λ
(j)
S (x|ς, �) = Ψ

(j)
Z (x, �)fS(x|ς, �)PS(ς, �), (81)

Λ
(j)
B (x, �) = Ψ

(j)
Z (x, �)pB(x, �)PB(�). (82)

A salient feature of the GLMB filter is the provision

for smoothed (single-object) trajectory estimates [96], [97].

Suppose that all observations up to the current time follow

the standard observation model (LRFS multi-object estimation

accommodates updates with different types of observations).

Then, in the GLMB filtering density propagation, say from

{(w(J), p) :J ∈F(L0)} at time 0, to {(w(ξ)(I-), p
(ξ)) : (ξ, I-)}

at time k − 1, we recursively constructs the ‘event’ ξ as the

history θ1:k-1 of association maps. Thus, the attribute density

p(ξ,θ)(·, �) = p(θ0:k)(·, �) contains the entire history θ0:k(�)
of detections associated with trajectory � [11], [26]. This

information, encapsulated in the multi-object filtering density,

can be used to estimate the entire trajectory (or over a moving

window) via smoothing [96], [97].

The GLMB recursion, defined by the above so-called joint
GLMB prediction and update, is a true Bayesian MOT filter

with provably Bayes-optimal track management. Since, each

component (ξ, I-) is propagated forward as a set of children

components {(ξ, θ, I) : (θ, I)}, the multi-object filtering den-

sity accumulates an intractably large number of components

with time. This inevitably requires approximation, either by a

simpler multi-object density, or by truncation.

D. LMB Filter

This subsection presents the LMB filter, regarded as the

PHD filter for trajectories. In the same way that the PHD

filter approximates the unlabeled multi-object filtering density

by a Poisson with matching PHD, the LMB filter approximates

the GLMB filtering density by an LMB with matching PHD.

However, unlike the PHD filter, the LMB filter provides

trajectory estimates, and does not suffer from high cardinality

variance when the number of objects is large.

Using an LMB birth model, the LMB sub-family is also

closed under the prediction operator Π . Specifically, given a

previous LMB filtering density π- = {(r-(�), p-(·, �))}�∈L- ,

the multi-object prediction density is the LMB [73]

π = fB ∪ {(rS(�), pS(·, �))}�∈L- , (83)

where fB is the birth LMB density/parameter,

rS(�) = r-(�) 〈PS p-〉(�), (84)

pS(x, �) =
〈fS(x|·)PS(·)p-(·)〉(�)

〈PS p-〉(�)
. (85)

While the LMB prediction operation is exact and intuitively

appealing, the LMB family is not closed under Bayes rule.

The LMB filter uses the above LMB prediction, and applies

the update operator to the predicted LMB π, yielding the

GLMB ΥZ (π) = {(w(θ)
Z (I), p

(θ)
Z ) : (θ, I)}. Further, using (23),

(24), the GLMB ΥZ (π) is approximated by the LMB

π(·|Z) = {(rZ(�), pZ(·, �))}�∈L, (86)

with matching PHD, by setting

rZ(�) =
∑
θ∈Θ

∑
I⊆L

1I(�)w
(θ)
Z (I), (87)

pZ(y, �) ∝
∑
θ∈Θ

p
(θ)
Z (y, �)

∑
I⊆L

1I(�)w
(θ)
Z (I). (88)

Due to the smaller number of components than the GLMB

filter, the LMB filter is faster, albeit with some degradation in

tracking performance.

Remark 6. If the weight w
(θ)
Z (I) of every component

(w
(θ)
Z (I), p

(θ)
Z ) of the GLMB ΥZ (π) can be written in the

form K
(θ)
Z [r

(θ)
Z /(1 − r

(θ)
Z )]I , then Δ(X)w

(θ)
Z (L (X))[p

(θ)
Z ]X
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is indeed an (unnormalized) LMB, see (20), and hence ΥZ (π)
is a mixture of LMBs. However, this is not the case because

w
(θ)
Z (I) = 1Θ(I)(θ)K

(θ)
Z

[
r
(θ)
Z /(1− r

(θ)
Z )
]I

,

which cannot be expressed as a product over I due to the term

1Θ(I)(θ). Thus, LMB mixtures are not conjugate priors.

E. GLMB Filter Implementation

Implementing the GLMB filter requires truncation of the

multi-object filtering density without exhaustive enumeration.

Each component (ξ, I-) of the GLMB filtering density at time

k − 1 propagates a (very large) set {(ξ, I-, θ, I) : (θ, I)} of

“children” components (before marginalizing out I-) to the

current time. Truncation by selecting “children” with signifi-

cant weights minimizes the L1-approximation error [26], and

can be accomplished via solving the rank assignment problem

or via Gibbs sampling (GS). Computing w
(ξ,θ)
Z (I) and p

(ξ,θ)
Z

can be accomplished via single-object filtering techniques.

Given a fixed component (ξ, I-) at time k−1, the goal is to

find a set of (θ, I)∈Θ× F(L) with significant weight incre-

ment w
(ξ,I-,θ,I)
Z . Due to the terms 1F(I-�B)(I) and 1Θ(I)(θ)

in (79), we only need to consider (θ, I) with I ⊆ I- � B and

D(θ) = I . Hence, it is convenient to represent such (θ, I) by

an extended association map (or simply extended association)

γ :I- � B→{−1: |Z|}, defined by

γ(�) �
{
θ(�), if � ∈ D(θ)

−1, if � ∈ (I- � B)−D(θ)
. (89)

Note that γ inherits the positive 1-1 property, and the set

of all such γ is denoted by Γ. Since (θ, I) is recovered by

I = {� : γ(�) ≥ 0}, θ(�) = γ(�) for each � ∈ I , it

follows that 1F(I-�B)(I) = 1 and D(θ) = I . Enumerating

I- � B = {�1:P }, and Z = {z1:M}, γ can be represented as a

P-tuple in {−1:M}P . Further, abbreviating

η(i)(j) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1−
〈
p(ξ)- PS

〉
(�i), �i ∈ I-, j < 0∫ 〈

Λ
(j)
S (x|·)p(ξ)- (·)

〉
(�i)dx, �i ∈ I-, j ≥ 0

1− PB(�i), �i ∈ B, j < 0∫
Λ
(j)
B (x, �i)dx, �i ∈ B, j ≥ 0

, (90)

(the dependence on ξ, I-, and Z are suppressed) the weight

increment (79) can be expressed as [95]

w
(ξ,I-,θ,I)
Z = ω(γ) � 1Γ(γ)

P∏
i=1

η(i)(γ(�i)). (91)

The values of η(i)(j) is precomputed as the P × (M + 2)
association score matrix shown in Fig. 12, and the goal

becomes finding a set of γ with significant ω(γ).
1) Ranked Assignment: The K best (extended) associations

in non-increasing order of ω(γ) can be obtained without ex-

haustive enumeration by solving a ranked assignment problem.

Here, each association γ ∈ Γ is equivalently represented by a

P×(M + 2P ) assignment matrix S whose entries are either

0 or 1, with every row summing to 1, and every column

summing to either 1 or 0. The objective is to find the K
assignment matrices with smallest trace(STC), where C is the

not exist missed z1 · · · zM

�1 η(1)(-1) η(1)(0) η(1)(1) · · · η(1)(M)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

�i η(i)(-1) η(i)(0) η(i)(1) · · · η(i)(M)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

�P η(P )(-1) η(P )(0) η(P )(1) · · · η(P )(M)

× mask

1 1 0 · · · 1

1∈{γ′(�1:i-1), γ(�i+1:P)} M 
∈{γ′(�1:i-1), γ(�i+1:P)}
sample

γ′(�1)
...

γ′(�i)
...

γ(�P )

fi
ffiffiffiffiffiffifl

»
——————–

�(i)(j|γ′(�1:i-1),� γ(�i+1:P� ))

Fig. 12: Association score matrix and conditionals (at time

k). The i-th unnormalized conditional �(i) is determined by

taking the i-th row of the association score matrix, i.e., η(i)(j),
j = −1 : M , and set η(i)(j) = 0 for each positive j associated

with a label other than �i.

P ×(M + 2P ) cost matrix constructed from the association

score matrix in Fig. 12 by [95]

Ci,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
− ln η(i)(j), j ∈ {1 : M}
− ln η(i)(0), j = M + i

− ln η(i)(−1), j = M + P + i

∞, otherwise

. (92)

Since exp
(
−trace(STC)

)
=
∏P

i=1η
(i)(γi) = ω(γ), the K

best assignment matrices correspond to the K associations

with largest weights [95]. A GLMB filter implementation

with O
(
K(M + 2P )4

)
complexity was proposed in [98]

using Murty’s algorithm [99] to solve the ranked assignment

problems. More efficient algorithms [100], [101] can reduce

the complexity to O
(
K(M + 2P )3

)
.

The initial GLMB filter implementation truncates the pre-

dicted and updated multi-object densities at each time [11],

[26]. Since truncation of the prediction is separated from the

update, information from the observation is not exploited, and

a significant portion of the predicted components subsequently

generate updated components with negligible weights, which

waste computations. The joint prediction and update avoids

this problem, thus improving computational speed [95]. For

the LMB special case, belief propagation can also be exploited

for a fast implementation [102]. A drawback of using ranked

assignment is the high computational cost of generating a

sequence of components ordered by their weights, whilst such

ordering is not needed in the GLMB approximation.
2) Gibbs Sampling: An efficient way to generate signifi-

cant GLMB components is to sample from some probability

distribution � on {−1:M}P [95]. To ensure that mostly high-

weight positive 1-1 P-tuples are sampled, � is constructed so

that only positive 1-1 P-tuples have positive probabilities, and

those with high weights are more likely to be chosen than

those with low weights. An obvious choice of � is (91).
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Fig. 13: Large-scale GLMB filter tracking over 1 million objects in a 64km×36km region [27]. The insets show a magnified

2km×1km region, OSPA/OSPA(2) errors, and cardinality. Objects can appear anywhere, at a rate of 200-3000 per frame

(unknown to filter). The object’s position and velocity follow a linear Gaussian motion model with 0.2ms-2 process noise

standard deviation, and 0.88 detection probability. Position observations are corrupted by Gaussian noise with a 5m standard

deviation, and clutter, uniformly distributed on the region at an average of 460800 points. About 1 billion data points accumulate

over 1000 frames, each contains about 1 million objects on average, peaking to 1,217,531 at frame 700.

Gibbs Sampling (GS) is an efficient special case of the

Metropolis-Hasting algorithm for sampling from an unnor-

malized distribution � [103], [104]. This algorithm constructs

a Markov chain that sequentially generates a new iterate γ′

from the current iterate γ. When the chain runs for long

enough, i.e., past the burn-in stage, subsequent samples would

be distributed according to the target distribution �. Unlike

sampling for posterior inference, in GLMB filtering it is not

necessary to discard burn-ins because all distinct positive 1-1

P-tuples will reduce the L1-approximation error.

The GLMB truncation developed in [95] employs the clas-

sical Systematic-scan GS (SGS) strategy, wherein the next

iterate γ′ is generated from the current iterate γ by sampling

each coordinate γ′(�i) of γ′, for i = 1:P , from the so-called

the i-th conditional �(i)(·|γ′(�1:i-1), γ(�i+1:P )) on {−1 :M}
[103], [104]. It was shown in [95] that to arrive at the target

distribution (91), the required unnormalized i-th conditional

is given by the i-th row of the association score matrix after

zeroing the entry of every positive j that has been paired with a

label other than �i, see Fig. 12 for illustration. More concisely,

�(i)(j|γ′(�1:i-1), γ(�i+1:P )) ∝ η(i)(j), except at each positive

j in the set {γ′(�1:i-1), γ(�i+1:P )} of values associated with

labels other than �i, wherein �(i)(j|γ′(�1:i-1), γ(�i+1:P )) = 0.

This remarkably simple result provides an inexpensive way to

generate significant positive 1-1 tuples, and was exploited to

implement SGS GLMB truncation in [95] with an O(TP 2M)
complexity, but later reduced to O(TPM) in [105], where

T is the number of iterates of the Gibbs sampler. Note that

starting with any positive 1-1 tuple, e.g., all 0’s or all -1’s, all

subsequent iterates are positive 1-1.

In [96], SGS was extended to address the NP-hard multi-

sensor GLMB truncation problem with linear complexity in

the total number of detections across all sensors. This SGS

multi-sensor GLMB filter implementation also applies to ap-

proximations such as the LMB and marginalized GLMB filters

since these filters require full GLMB updates [73], [106]. Such

a multi-sensor LMB filter implementation has been extended

to address partially overlapping fields of views in [107].

Following the development of SGS GLMB truncation, other

sampling-based techniques have been proposed. In [108],

the positive 1-1 requirement was neglected to achieve linear

complexity in P , albeit at a degradation in performance. A

herded GS implementation of the LMB filter was proposed

in [109], which turned out to be slower than the SGS im-

plementation. Spatial search and approximation by a product

of smaller GLMBs (see Subsection IV-F) that run in parallel

were proposed in [27] to reduce computation times. While

this approach was demonstrated to track in excess of one

million objects from approximately 1.3 million detections at

a time, see Fig. 13, the complexity has not been reduced.
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Cross-entropy based solutions [110] were developed in [111]

and [112], for multi-sensor GLMB filtering and its distributed

version, but with higher complexity than the SGS implemen-

tation in [96]. The recently developed tempered GS (TGS)

technique reduces the complexity to O(T (P +M)) [105].

F. Multi-Scan GLMB Filter/Smoother

Similar to the (multi-object) Bayes filtering recursion, the

posterior recursion (54) admits an analytic solution in the form

of a multi-scan GLMB. This subsection presents the multi-

scan GLMB recursion under the standard multi-object SSM

model (with LMB birth for simplicity). For convenience, when

we write {P (ξ, θ, Ij:k) : (ξ, θ, Ij:k)}, it is understood that the

variables ξ, θ, and Ij:k, respectively, range over the spaces Ξ,

Θ, and
∏
× k
i=jF(Li), unless otherwise stated.

The multi-scan GLMB is closed under the Bayes posterior

recursion (54). Indeed, it is closed under: the prediction,

defined as π0:n(X0:n)= fn(Xn|Xn-1)π0:n-1(X0:n-1); and

the Bayes update since it is a GLMB where the argument

is a set of labeled trajectories [91]. Thus, starting with an

initial multi-scan GLMB prior, the multi-object prediction and

posterior at any time are multi-scan GLMBs.

The multi-scan GLMB recursion (or GLMB smoothing

recursion) [91, eq. (42)-(46)] propagates the multi-scan GLMB

π0:n-1 = {(w(ξ)
- (I0:n-1), p

(ξ)
- ) : (ξ, I0:n-1)}, (93)

at time n− 1 to the multi-scan GLMB

π0:n(·|Z) ∝ {(w(ξ,θ)
Z (I0:n), p

(ξ,θ)
Z ) : (ξ, θ, I0:n)}, (94)

at time n, where

w
(ξ,θ)
Z (I0:n) =w

(ξ,In-1,θ,In)
Z w(ξ)

- (I0:n-1), (95)

p
(ξ,θ)
Z (xs(�):t(�), �) ∝ (96)⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

p(ξ)- (xs(�):t(�), �), t(�) < n-1

(1-PS(xt(�), �))p
(ξ)
- (xs(�):t(�), �), t(�) = n-1

Λ
(θ(�))
S (xn|xn-1, �)p

(ξ)
- (xs(�):n-1, �), s(�) < t(�) = n

Λ
(θ(�))
B (xn, �), s(�) = t(�) = n

,

w
(ξ,In-1,θ,In)
Z is the weight increment given by (79), s(�) and

t(�) are, respectively, the earliest and latest times that � exists

on the time window {0 : n}, Λ
(j)
S (xn|xn-1, �) and Λ

(j)
B (xn, �)

are, respectively, given by (81) and (82).

Observe the similarity between the GLMB filter (77)-(82)

and the multi-scan GLMB filter. Indeed, the latter is (alge-

braically) simpler and more intuitive than the former since no

marginalization is needed. The new posterior GLMB weights

are simply the old weights scaled by their corresponding

weight increments. Further, given the old posterior density

p(ξ)- (·, �) of trajectory � at time n − 1: if � died before time

n−1, then its new posterior is p(ξ)- (·, �); if � died at time n−1,

then its new posterior is p(ξ)- (·, �) times the death probability;

if � (born before time n) survives to time n, then its new

posterior is p(ξ)- (·, �) times the survival probability, transition

density, and the SNR; if � is born at time n, then its new

posterior is the probability of birth times the attribute density

of its new state, and the SNR.

Similar to the GLMB filter, the number of components of

the GLMB posterior grows super-exponentially with time, and

truncation by retaining a prescribed number of components

with highest weights minimizes the L1-norm approximation

error [91]. Unlike the GLMB filter, the multi-scan GLMB trun-

cation problem requires solving large-scale multi-dimensional
ranked assignment problems, which is NP-hard for more than

two dimensions.

G. Multi-Scan GLMB Filter Implementation

An SGS multi-scan GLMB truncation technique has been

developed for the multi-scan GLMB filter implementation in

[91]. Similar to the single-scan counter-part, we only need

to consider (θ, Ik) represented by the (extended) association

γk : Ik-1 � Bk → {−1 : |Zk|} defined in (89). Note that the

domain D(θ) is given by L(γk) � {� ∈ Ik-1�B : γk(�) ≥ 0},

called the live labels of γk. Assuming all observations follow

the standard model, (θ, In) and (ξ, I0:n-1) can be equivalently

represented by γn and γ0:n-1. Further, for each k ∈ {0 : n},

enumerating L(γk-1) � Bk = {�1:Pk
} and Zk = {z1:Mk

}, we

can represent γk as a Pk-tuple in {−1:Mk}Pk .

Denoting the weight w
(ξ,θ)
Z (I0:n) by ω0:n(γ0:n) to convey

the dependence on γ0:n, and applying the weight propaga-

tion (95) iteratively to an initial multi-scan GLMB π0 =

{(ω0(γ0), p
(γ0)
0 ) :γ0 ∈ Γ0} yields

ω0:n(γ0:n) =

n∏
k=1

[
1
(γk-1)
Γk

(γk)

Pk∏
i=1

η
(i)
k (γk(�i))

]
ω0(γ0), (97)

where 1
(γk-1)
Γk

(γk)�1Γk
(γk)1F(L(γk-1)�Bk)(L(γk)), and η

(i)
k (j)

is defined in (90) with the time k suppressed (keeping in mind

its implicit dependence on ξ = γ0:k-1(�i)). Following the GS

strategy, the objective is to generate significant association

histories by sampling from some discrete probability distri-

bution � on
∏
× n
k=0{−1:Mk}Pk , preferably � = ω0:n, so that

only valid association histories have positive probabilities, and

those with high weights are more likely to be chosen.

1) Sequential Factor Sampling: Decomposing � as

�(γ0:n) =

n∏
k=1

�k(γk|γ0:k-1)�0(γ0), (98)

and choosing the factors �0 = ω0,

�k(γk|γ0:k-1) ∝ 1
(γk-1)
Γk

(γk)

Pk∏
i=1

η
(i)
k (γk(�i)),

for k = 1 : n, yields � = ω0:n. Hence, a simple method

to sample from (97) is to sample γ0 from �0, and then

for k = 1 : n, sample γk : L(γk-1) � Bk → {−1 : |Zk|}
from �k(·|γ0:k-1). This sequential generation of γ0:n ensures

1F(L(γk-1)�Bk)(L(γk)) = 1, and hence

�k(γk|γ0:k-1) ∝ 1Γk
(γk)

Pk∏
i=1

η
(i)
k (γk(�i)), (99)

for each k ∈ {1:n}. Sampling from (99) can be accomplished

using the SGS technique described in Subsection V-E2. While

any γ0:n generated by this method is a valid association history
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Fig. 14: Multi-scan association score matrix and conditionals at time k. The i-th unnormalized conditional �
(i)
k is determined

by taking the i-th row of the k-th association score matrix, i.e., η
(i)
{k:t(�i)}(j), j = −1:Mk, and set η

(i)
{k:t(�i)}(j) = 0 for: each

positive j associated with a label other than �i; and any negative j, if �i is a live label at time k + 1.

[91], to ensure that γ0:n is distributed according to (98), it is

necessary to run the Gibbs sampler for each k long enough so

that γk is distributed according to (99). Nonetheless, sequential

factor sampling can be used to generate good starting points

for the Markov chains in full GS.

2) SGS: Sampling from � via SGS involves constructing

a Markov chain where a new iterate γ′
1:n is generated from

γ1:n by sampling the coordinates γ′
k(�i), k = 1:n, i = 1:Pk

of γ′
1:n, from the conditional distributions �

(i)
k defined by

�
(i)
k (j|

past︷ ︸︸ ︷
γ′
0:k-1,

current (processed)︷ ︸︸ ︷
γ′
k(�1:i-1) ,

current (unprocessed)︷ ︸︸ ︷
γk(�i+1:Pk

) ,

future︷ ︸︸ ︷
γk+1:n )

∝ �(γ′
0:k-1, γ

′
k(�1:i-1), j, γk(�i+1:Pk

), γk+1:n). (100)

Similar to the single-scan case, the conditional �
(i)
k is deter-

mined from the association score matrices at times k and k+1,

see Fig. 14, which can be pre-computed as follows.

Recall from (90) that η
(i)
k (jk) depends on ξ, specifically, the

indices js(�i):k−1 of the detections associated with �i up to

time k− 1 (since all observations follow the standard model).

To express this dependence explicitly we write η
(i)
k (jk) as

η
(i)
k (js(�i):k). The (i, j)-th entry of the multi-scan association

score matrix for time k is given by

η
(i)
{k:t(�i)}(j) �

t(�i)∏
m=k

η(i)m (γ′
0:k-1(�i), j, γk+1:m(�i)),

where t(�i) is the latest time �i exists on {0 : n}, and by

convention, η
(i)
k (γ′

0:k-1(�i), j, γk+1:k(�i)) = η
(i)
k (γ′

0:k-1(�i), j).
It was shown in [91] that to arrive at the target distribution

(97), the unnormalized conditional �
(i)
k is given by the i-th

row of the k-th association score matrix after zeroing the entry

of: every positive j that has been paired with a label other

than �i at time k (like the single-scan case); and any negative

j < γk+1(�i) (a surviving label at time k + 1 must be live at

time k, i.e., γ′
k(�i) > −1, because the standard multi-object

dynamic model only admits unfragmented trajectories), see

Fig. 14 for illustration. This simple result admits a tractable

SGS multi-scan GLMB truncation algorithm for the GLMB

smoother implementation in [91].

This multi-scan GLMB truncation technique has been ex-

tended to multiple sensors in [113], and demonstrated on a

multi-object smoothing problem with 100 scans and 4 sensors,

which requires solving 400-dimensional ranked assignment

problems with approximately 10 variables in each dimension.

Moving window-based implementations can achieve a fixed

O(LTV P 2M) complexity per time step using SGS [113], or

O(LTV (P + M)) using TGS, where L is the length of the

smoothing window, T is the number of iterates of the Gibbs

sampler, V is the number of sensors, P is the number of

hypothesized trajectories, and M is the maximum number of

detections per sensor.

H. Multi-Object Estimation with Non-Standard Models

The standard multi-object dynamic model assumes condi-

tionally independent individual transitions, and is sufficient

to cover sophisticated single-object motion, e.g., motion with

road constraints [114], or multi-modal motion [115]–[120].

However, it is not adequate to capture inter-object correla-

tions, which requires more general multi-object transition, e.g.,

interacting objects [85], [121], group targets [122]–[124], and

spawning/dividing objects [83], [87]. In the latter, we also seek

the ancestries of the objects, which is easily accomplished in

the LRFS formulation by augmenting the parents’ labels into

the object’s labels, see Fig. 15. Consequently, the multi-object

filtering density is no longer a GLMB, and the exact solution

is intractable. M-GLMB approximations (see Subsection IV-F)

are used to capture inter-object correlations and ancestries

in the multi-object trajectory [83], [87]. An approximate

GLMB filter that accommodates objects exiting the state space

and reappearing later (along with a non-standard observation

model) was developed in [125].

While the standard multi-object observation likelihood is

general enough to accommodate a range of noise models, e.g.,

[126]–[130], it does not cover extended object observations

[131], [132], merged/occluded observations [80], [86], and

image observations [81], [84], [133], and [134].

Under the extended observation model that allows an object

to generate multiple detections, the GLMB filter and smoother
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Fig. 15: Labels capture ancestries of object in spawnings. A

daughter’s label (�, k, ι) consists of the parent label �, the time

of birth k, and an individual identity ι to distinguish it amongst

the siblings. At time 4, �1 spawns 3 daughters with labels

�2 = (�1, 4, 1), �3 = (�1, 4, 2), and �4 = (�1, 4, 3). At time 7,

�3 spawns �5 = (�3, 7, 1) and �6 = (�3, 7, 2).

are still exact solutions [131], [135], which can be imple-

mented with Gaussians (and Gaussian mixture) or particle

methods [136]. Extended objects are modeled by Gaussian-

Gamma-Inverse-Wishart distributions in [131], B-splines in

[137], and multiple ellipses in [132].

The standard observation model cannot accommodate mul-

tiple objects sharing detections due to occlusions. In this case,

the detection probability of an object depends on the entire

multi-object state, and requires a non-standard observation

model [80], [86], [125]. The resultant multi-object filtering

density is not a GLMB, and M-GLMB or LMB approxima-

tions have been used in [80], [138]. In [86], [125], efficient

GLMB approximations based on the predicted states, were

used to update the individual detection probabilities to account

for occlusions, while in [139] the dependence of the detection

probability on other states are marginalized out.

In applications where the multi-object state generates a

single observation, inter-object correlations are introduced

through the update into the multi-object filtering density which

no longer takes on a GLMB form. The particle implementa-

tions for a general observation model proposed in [81], [133]

are computationally demanding, and the M-GLMB approxi-

mation has been developed in [70]. Efficient approximations

exploiting the additivity of superpositional observations are

also proposed in [84], [134], [140]. This approach was com-

bined with pseudo-smoothing to address acoustic vector sensor

observations in [141]. A parallelizable LMB approximation

is developed in [82], while GLMB filtering and smoothing

approximations are proposed in [142], [143], [144] (the former

also covers extended object observations). An LMB filter for

pre-clustered laser range finder image data is proposed in

[145]. A salient advantage of LRFS in MOT over legacy

approaches such as MHT, is the seamless operation with

different observation types such as detections and images.

Indeed, a GLMB filter has been applied to an observation

model that switches between detections and image observation

in [146]. Non-standard models have also been developed

for applications with unknown model parameters. These are

included in the discussion on robust multi-object estimation.

I. Robust Multi-Object Estimation

Multi-object filtering solutions have also been developed

to address unknown multi-object model parameters. In [147],

the unknown detection probability is jointly estimated by

augmenting it to the attribute state, while the unknown clutter

rate is addressed by treating clutter as a different class of

objects [148]. This formulation results in a GLMB filter

with jump Markov single-object dynamic, which incurs extra

computational complexity [147]. A more efficient suboptimal

alternative is the bootstrapping approach that uses robust

CPHD or multi-Bernoulli filters [149], [150] to estimate the

detection probability and clutter rate from the observations,

and feed them to the GLMB filter [151], [152], [153]. In

[154]–[157], unknown observation noise parameters is ad-

dressed by augmenting the object attributes with noise covari-

ance matrices to be jointly estimated by integrating Variational

Bayes techniques to the multi-object filter.

Unknown birth model parameters can be addressed by

the measurement-driven birth approach [73], where current

detections are used to predict the birth parameters at the

next time. GLMB filtering with measurement-driven birth is

popular for MOT with unknown birth models [158]–[160]. In

[161], a measurement-driven birth model for interval observa-

tions was developed, while in [162], the Rauch-Tung-Striebel

smoother was used to improve the multi-object birth density

estimation. An admissible region birth model for space objects

was proposed in [163]. In [164], birth parameter estimation

was developed for multi-sensor GLMB filtering, where GS

is used to select probable detection combinations. A fully

robust GLMB filter that combines unknown birth and sensor

parameters estimation techniques were developed in [165].

Around the same time an interesting formulation using outer

probability measure, which allows GLMB filtering in the

absence of model parameters was developed in [166].

J. Distributed Multi-Object Estimation

Encapsulating all information on the multi-object trajecto-

ries in the filtering/posterior densities allows density fusion.

In [89], the Generalized Covariance Intersection (GCI) fusion

rule [167], was applied to fuse the local labeled multi-object

densities π(s), s ∈ {1:S} into

π̄GCI = argmin
π

∑
s∈Sω

(s)DKL(π||π(s)),

where each ω(s) is a user-defined fusion weight. It was shown

that the M-GLMBs or LMBs, are closed under GCI fusion

[89]. For LMB local densities, a technique for determining

the weights ω(s) of each of their component was proposed

in [168], using the information gain at the local update step.

The fusion weights can also be optimized to fuse GLMBs

from sensor nodes with different field of view (FoV) [169].

In [75], the event-trigger strategy was proposed to reduce the

communication burden in GCI fusion.

GCI fusion is sensitive to mismatches in the labels due

to uncertainty in the object birth times [170]. To avoid this

mismatch, GCI was used to fuse multi-Bernoulli approxima-

tions of the unlabeled versions of the local labeled multi-object

densities, and then augment the labels to the fused multi-object
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density [170]. In [171], the label mismatch was quantified

by the minimum KL-D between the unlabeled versions of

the local labeled densities. Further, it was shown that for

local LMB densities, minimizing the label mismatch translates

to solving a linear assignment problem. For sensors with

different FoVs, it was proposed in [172] to maintain a list

of label matches and extend the label space of each node to

include labels of objects that cannot be observed by the local

sensor. In [173], an additional group variable was introduced

to record matching information among sensors, and fusion was

performed separately on the surviving and newborn objects.

Exchanging the arguments of the KL-D in GCI fusion

results in Minimum Information Loss (MIL) fusion [174]:

π̄MIL = argmin
π

∑
s∈Sω

(s)DKL(π
(s)||π).

Unlike GCI fusion, MIL fusion preserves both common and

exclusive information of the local densities. MIL fusion formu-

lae for M-GLMBs and LMBs that restrict the fused densities to

the same family as the local densities were derived in [174].

The label matching strategy in [171] can be used to ensure

all local densities have the same label space. For sensors with

different FoVs, the local densities can be decomposed into sub-

densities with minimum KL-D from the original ones, and then

fused together using MIL [175]. GCI and MIL fusion were

combined to exploit their respective advantages in [176], [177],

and to enhance resilient to cyber-attack in peer-to-peer sensor

network in [178]. GCI and MIL fusion are considered as

geometric averaging (of the multi-object densities) approaches.

Fusion via arithmetic averaging has also been proposed as a

versatile alternative to geometric averaging in [179], [180].

Apart from the KL-D based fusion discussed above, there

are also other fusion solutions. In a centralized setting, local

densities can be approximated by Poissons with matching

first moments, which are then fused together using CS-D

based fusion [181]. In [182], the authors proposed to fuse

the LMB components (from different nodes) corresponding to

a particular label into a single component. In [183], Bayes

parallel combination rule was used to compute the global

posterior density from synchronous centralized sensors. In

[112], instead of fusing the local GLMBs, distributed cross-

entropy and average consensus were used to sample multi-

sensor assignments with high scores. An approach that directly

fuses the local multi-object estimates was proposed in [184],

which incurs far lower complexity than density fusion and can

be efficiently extended to multiple scans. Further, since only

the estimates are fused, this fusion algorithm is not restricted

to any tracking algorithms or approaches.

K. Multi-Object Control

In multi-object control, we seek control signals to drive

the multi-object state/trajectory by optimizing the cost/reward

function, subject to a set of constraints. Cost functions are

usually based on information divergence. Due to its closed-

form for the GLMB filtering density, the CS-D was used as the

cost function for a sensor control problem and void probability

constraints in [72], [185]. Moreover, a sensor management

framework for the GLMB filter based on the CS-D was

developed in [186]. A passive sensor management solution

was also proposed for the GLMB filter in [187]. While the

CS-D can be computed analytically for GLMBs, it is still an

expensive task. A cheaper alternative was proposed in [188]

by using the LMB filter with a cost function based on the CS-

D between the Poisson approximations of the LMBs, which

can be computed efficiently [78] (see also Subsection IV-E).

In [189], Rényi-D was also suggested as the reward function

with the GLMB filter. The simple closed-form information

divergence for LMBs in Subsection IV-E could be used to

accelerate computation of information-based reward functions.

For multi-sensor tasking, a Rényi-D reward was used in

[190], while in [191], a task-driven reward function with the

LMB filter based on GCI fusion was proposed. In [192],

maximizing the task-driven reward was replaced by minimiz-

ing the ratio of non-existence to existence probability for

a subset of objects of interest in the LMB. A solution to

this problem with CS-D as the reward function was given

in [193]. Methods to control drones based on Rényi-D and

CS-D were proposed in [50]. Inspired by the multi-objective

formulation for the multi-object localization problem [194], in

[76], a multi-objective reward function for the two conflicting

tasks of tracking and discovery with limited FoV sensors was

proposed. Using mutual information and differential entropy

objectives, it was also established that the multi-objective

reward is monotone and sub-modular, which allows the op-

timal control action to be efficiently computed via greedy

algorithms. Metric based reward functions have also been

proposed. In [195] the dispersion of the labeled multi-object

density about its statistical mean using the OSPA distance was

used to maximize the accuracy of the estimates. Similarly,

techniques for multi-sensor control/selection that optimize a

metric-based objective function were also proposed in [196],

[197]. Further, simultaneous localization and mapping can also

be performed with the LRFS filters [198], [199].

VI. CONCLUSIONS

The notion of a State-Space Model (SSM) has been the

cornerstone for modern estimation and control theory, in which

the celebrated Kalman filter is often recognized as one of

the seminal contributions. A multi-object SSM generalizes the

state vector to a finite set of vectors for modeling multi-

object systems, wherein both the number of objects and

their individual states are unknown and dynamically varying.

Moreover, to retain the fundamental premise that the system

trajectory is given by the history of the system states, it is

necessary to use the labeled multi-object representation of

the system state. Analogous to how information on a single

trajectory is encapsulated in the filtering/posterior density of

the state vectors, a Labeled Random Finite Set (LRFS) enables

information on the multi-object trajectory to be encapsulated

in the multi-object filtering/posterior density.

This article has provided an overview of key developments

in the LRFS approach to multi-object SSM. LRFS resolves

the theoretical drawbacks of the unlabeled RFS formulation

for multi-object SSMs, and offers important advancements. In

particular, the LRFS approach:
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• Enables principled multi-object trajectory estimation with

bounded complexity per time step (without resorting to

post-processing heuristics), resolving an important con-

ceptual shortcoming of unlabeled RFS;

• Provides statistical characterization of uncertainty for the

underlying multi-object trajectory ensemble, offering new

conceptual tools and applications;

• Naturally covers trajectory crossings, fragmentations, and

lineages (in spawning objects), as well as seamless oper-

ations with different types of observations simultaneously

or at different times, thereby resolving the theoretical

problem concerning multiple objects occupying the same

attribute state and further broadening the application base;

• Admits the concept of joint existence probability for the

elements of a multi-object state, and hence, a meaningful

notion of the most probable multi-object state(s), funda-

mental to multi-object estimation;

• Enables principled approximations of multi-object den-

sities (with characterizable approximation errors) and

reduces the standard multi-object transition density from

a combinatorial sum to a single term, offering new

analytical tools as well as facilitating efficient solutions,

which are scalable in the numbers of objects, detections,

sensors and scans.

Multi-object SSM is not only rich in theory, but also in

mathematical and computational tools. While the majority of

research in the field has focused on multi-object estimation,

the related areas of system identification and control remain

largely unexplored. Within the estimation problem there are

nonetheless many open theoretical and computational chal-

lenges, such as Cramér-Rao like performance bounds for

multi-object estimation [200], more sophisticated multi-object

models and efficient accompanying solutions.
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VII. SUPPLEMENTARY MATERIALS

This supplementary section presents the proofs and addi-

tional discussions of the divergence results for Labeled Multi-

Bernoullis (LMBs) in Subsection IV-E. We recall the notation

〈f〉(�) �
∫
f(x, �)dx, and for each LMB parameterized by

{(ri(�), pi(·, �)) : � ∈ D(σi)}, with ri < 1, i = 1, 2 and D(σ)
denoting the domain of σ. Moreover, we use the multi-object

density of the form πi(X) = Δ(X)Kif
X
i , where Ki = r̃Li ,

r̃i � 1−ri, and fi � ripi/r̃i. Note that 〈fi〉(�) = ri(�)/r̃i(�),

r̃i(�) = (1 + 〈f i〉(�))−1
, and r̃Li = r̃

D(σi)
i , because ri(�) = 0,

i.e., r̃i(�) = 1 for � /∈ D(σi).

A. Preliminary Lemmas

The following lemmas facilitate the arguments in the proofs.

Lemma 1. For functions g, h defined on a finite set S,∑
L⊆S

gLhS−L = (h+ g) S .

Proof. Let S = {�1, ..., �n}, f = g/h, and recall Vieta’s for-

mula for elementary symmetric functions ei (f(�1), ..., f(�n)):

n∑
i=0

ei (f(�1), ..., f(�n)) (−1) izn−i =

n∏
j=1

(z − f(�j)) ,

Substituting z = −1 gives

(−1) n
n∑

i=0

ei (f(�1), ..., f(�n)) =

n∏
j=1

(−1− f(�j))

n∑
i=0

ei (f(�1), ..., f(�n)) =

n∏
j=1

(1 + f(�j)) .

Noting that

ei (f(�1), ..., f(�n)) �
∑

L⊆S,|L|=i

fL,

we have ∑
L⊆S

fL =

n∑
i=0

ei (f(�1), ..., f(�n))

=
n∏

j=1

(1 + f(�j)) = (1 + f) S .

Substituting f = g/h, and multiplying both sides by hS gives∑
L⊆S

( g
h

)L
hS =

(
1 +

g

h

)
ShS .

Hence,
∑

L⊆S gLhS−L = (h+ g) S .

Lemma 2. For f : X× L → R integrable on X,∫
Δ(X)fXδX =

∑
L⊆L

〈f〉L = (1 + 〈f〉) L.

Proof. The result follows by applying Lemma 3 in [11] to the

set integral, and then Lemma 1.

Lemma 3. For f, g : X × L → R integrable on X, with g
unitless∫

Δ(X)fX ln gXδX =
∑
L⊆L

∑
�∈L

〈f〉L−{�} 〈f ln g〉 (�)

The proof of this lemma is given in the Appendix of [76].

Lemma 4. For f : F(L) → R, g : L → R, and S ⊆ L,∑
L⊆S

f(L)
∑
�∈L

g(�) =
∑
�∈L

g(�)
∑

L⊆S−{�}
f(L ∪ {�}).

The proof of this lemma is given in the Appendix of [76].

B. Proof of Rényi Divergence (28)

Proof. The Rényi Divergence (Rényi-D) between the LMBs

π1 and π2 is given by

DR(π1||π2)

=
1

α− 1
ln

∫
Δ(X)

(
K1f

X
1

)α (
K2f

X
2

)1−α

δX

=
1

α− 1
ln

(
Kα

1 K
1−α
2

∫
Δ(X) (fα

1 )
X (

f1−α
2

)X
δX

)
=

1

α− 1
ln

((
r̃L1
)α(

r̃L2
)1−α

∫
Δ(X)

(
fα
1 f

1−α
2

)X
δX

)
=

1

α− 1
ln
[(
r̃α1 r̃

1−α
2

)L (
1 +
〈
fα
1 f

1−α
2

〉)L]
=
∑
�∈L

ln
[(
r̃α1 r̃

1−α
2

)
(�)
(
1 +
〈
fα
1 f

1−α
2

〉
(�)
)]

α− 1

=
∑
�∈L

ln
[(
r̃α1 r̃

1−α
2

)
(�)
]
+ ln

[
1+
〈
fα
1 f

1−α
2

〉
(�)
]

α− 1
,

where the 3rd last line follows from Lemma 2. Note that

r̃α1 r̃
1−α
2 > 0,

〈
fα
1 f

1−α
2

〉
(�) ≥ 0 and hence each term of the

sum is well-defined.

Remark: Since r̃i(�) = (1 + 〈f i〉(�))−1
, the above Rényi-D

can be written completely in terms of f1 and f2 as

DR(π1||π2) =
∑
�∈L

ln
[
1+
〈
fα
1 f

1−α
2

〉
(�)
]

α− 1

−
∑
�∈L

α ln [1+〈f1〉(�)]+(1−α) ln[1+〈f2〉(�)]
α− 1

.

Noting that f i = ripi/r̃i, and hence

〈
fα
1 f

1−α
2

〉
(�) =

rα1(�)r
1−α
2 (�)

r̃α1(�)r̃
1−α
2 (�)

〈
pα1 p

1−α
2

〉
(�),

we can write the Rényi-D in terms of the LMB parameters

DR(π1||π2) =
∑
�∈L

ln
[
r̃α1 r̃

1−α
2 (�) + rα1 r

1−α
2 (�)

〈
pα1 p

1−α
2

〉
(�)
]

α− 1
.

It also can be written in terms of the Probability Hypothesis
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Density (PHD) vi = ripi = r̃if i,

DR(π1||π2) =
∑
�∈L

ln

[
1+

〈vα
1 v1−α

2 〉(�)
(1−〈v1〉(�))α(1−〈v2〉(�))1−α

]
α− 1

+
∑
�∈L

α ln [1−〈v1〉(�)]+(1− α) ln [1−〈v2〉(�)]
α− 1

,

since r̃i(�) = 1− 〈vi〉(�), and f i = vi/(1− 〈vi〉).

C. Proof of Kullback-Leibler Divergence (30)

Proof. The Kullback-Leibler Divergence (KL-D) between the

LMBs π1 and π2 is given by

DKL(π1||π2) =

∫
Δ(X)K1f

X
1 ln

K1f
X
1

K2f
X
2

δX

=

∫
Δ(X)K1f

X
1

(
ln

K1

K2
+ ln

fX
1

fX
2

)
δX

= ln
K1

K2

∫
Δ(X)K1f

X
1 δX

+K1

∫
Δ(X)fX

1 ln

(
f1

f2

)X
δX

= ln
K1

K2
+K1

∫
Δ(X)fX

1 ln

(
f1

f2

)X
δX

= ln
K1

K2
+K1

∑
L⊆L

∑
�∈L

r
L−{�}
1

r̃
L−{�}
1

〈
f1ln

f1
f2

〉
(�),

where the last line follows from Lemma 3 and 〈f1〉 = r1/r̃1.

Since f1(·, �) = r1(�) = 0 for � /∈ D(σ1), and 0 ln 0 = 0
by convention, we can exchange L and D(σ1) in the sum.

Further, applying Lemma 4 gives

DKL(π1||π2)

= ln
r̃L1
r̃L2

+ r̃L1
∑

L⊆D(σ1)

rL1
r̃L1

∑
�∈L

〈
f1ln

f1

f2

〉
(�)

r1(�)/r̃1(�)

= ln
r̃L1
r̃L2

+ r̃L1
∑

�∈D(σ1)

〈
f1 ln

f1

f2

〉
(�)

r1(�)/r̃1(�)

∑
L⊆D(σ1)−{�}

r
L∪{�}
1

r̃
L∪{�}
1

= ln
r̃L1
r̃L2

+ r̃L1
∑

�∈D(σ1)

〈
f1ln

f1
f2

〉
(�)

∑
L⊆D(σ1)−{�}

rL1
r̃L1

= ln
r̃L1
r̃L2

+
∑
�∈L

〈
f1ln

f1
f2

〉
(�)r̃1(�)

∑
L⊆L−{�}

rL1 r̃
(L−{�})−L
1

= ln
r̃L1
r̃L2

+
∑
�∈L

r̃1(�)

〈
f1ln

f1
f2

〉
(�)

=
∑
�∈L

[
ln

r̃1(�)

r̃2(�)
+ r̃1(�)

〈
f1ln

f1
f2

〉
(�)

]
,

where the 2nd last equation follows from Lemma 1 and r1 +
r̃1 = 1.

Remark: Using r̃i(�) = (1 + 〈f i〉(�))−1
, the above KL-D

can be written completely in terms of f1 and f2 as

DKL(π1||π2) =
∑
�∈L

⎡
⎣ln1 + 〈f2〉(�)

1 + 〈f1〉(�)
+

〈
f1ln

f1

f2

〉
(�)

1 + 〈f1〉(�)

⎤
⎦ .

Further, using f i = ripi/r̃i, we can write〈
f1 ln

f1

f2

〉
(�)

=

∫
r1(�)

r̃1(�)
p1(x, �) ln

(
r1(�)r̃2(�)p1(x, �)

r̃1(�)r2(�)p2(x, �)

)
dx

=
r1(�)

r̃1(�)

∫
p1(x, �)

[
ln

r1(�)r̃2(�)

r̃1(�)r2(�)
+ ln

p1(x, �)

p2(x, �)

]
dx

=
r1(�)

r̃1(�)

[
ln

r1(�)r̃2(�)

r̃1(�)r2(�)
+DKL(p1(·, �)||p2(·, �))

]
.

Hence, the KL-D can be written completely in terms of the

LMB parameters as follows

DKL(π1||π2) =∑
�∈L

ln
r̃1(�)

r̃2(�)
+r1(�)

[
ln

r1(�)r̃2(�)

r̃1(�)r2(�)
+DKL(p1(·, �)||p2(·, �))

]
.

Alternatively, using r̃i(�) = 1−〈vi〉(�) and fi = vi/(1−〈vi〉),

r̃1(�)

〈
f1ln

f1
f2

〉
(�) =

〈
v1ln

v1(1− 〈v2〉)
v2(1− 〈v1〉)

〉
(�)

=

〈
v1ln

v1

v2

〉
(�)− 〈v1〉(�) ln

1−〈v1〉(�)
1−〈v2〉(�)

,

hence, the KL-D can be written in terms of the PHD as

DKL(π1||π2)

=
∑
�∈L

ln
1−〈v1〉(�)
1−〈v2〉(�)

−
∑
�∈L

〈v1〉(�) ln
1−〈v1〉(�)
1−〈v2〉(�)

+
∑
�∈L

〈
v1ln

v1

v2

〉
(�)

=
∑
�∈L

[
ln

1−〈v1〉(�)
1−〈v2〉(�)

− 〈v1〉(�) ln
1−〈v1〉(�)
1−〈v2〉(�)

]

+
∑
�∈L

〈
v1ln

v1

v2

〉
(�)

=
∑
�∈L

[
(1−〈v1〉)(�) ln

1−〈v1〉(�)
1−〈v2〉(�)

+

〈
v1ln

v1

v2

〉
(�)

]
.

D. Proof of χ2 Divergence (32)

Proof. The χ2 Divergence (χ2-D) between the LMBs π1 and

π2 is given by

Dχ2(π1||π2) =

∫
Δ(X)

(
K1f

X
1

)2
K2f

X
2

δX − 1

=
K2

1

K2

∫
Δ(X)

(
f2
1

)X
fX
2

δX − 1

=
K2

1

K2

(
1 +

〈
f2
1

f2

〉)L

− 1
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=

[
r̃21
r̃2

(
1 +

〈
f2
1

f2

〉)]L
− 1

=
∏
�∈L

r̃21(�)

r̃2(�)

[
1 +

〈
f2
1

f2

〉
(�)

]
− 1,

where the 3rd last equation follows from Lemma 2.

Remark: The above χ2-D can be written completely in terms

of f1, f2, or the LMB parameters, or the PHDs, as follows

Dχ2(π1||π2) =

[
1 + 〈f2〉

(1 + 〈f1〉)2
(
1 +

〈
f2
1

f2

〉)]L
− 1

=

[
r̃21
r̃2

(
1 +

r21 r̃2
r̃21r2

〈
p21
p2

〉)]L
− 1

=

[
(1−〈v1〉)2
1−〈v2〉

(
1 +

〈
v2
1(1−〈v2〉)

v2(1−〈v1〉)2
〉)]L

−1.

E. Proof of Cauchy-Schwarz Divergence (35)

Proof. For the multi-object exponentials f
(·)
1 ,f

(·)
2 , let〈

Δf
(·)
1 ,Δf

(·)
2

〉
U
=

∫
Δ(X)U |X|fX

1 fX
2 δX,

where U is the unit of hyper-volume. Applying Lemma 2 gives〈
Δf

(·)
1 ,Δf

(·)
2

〉
U
=

∫
Δ(X) (Uf1f2)

X
δX

= (1 + 〈Uf1f2〉)L.
Using the above result, the Cauchy-Schwarz Divergence

(CS-D) between two LMBs π1 and π2 can be written as

DCS(π1,π2)

=− ln

〈
K1Δf

(·)
1 ,K2Δf

(·)
2

〉
U〈

K1Δf
(·)
1 ,K1Δf

(·)
1

〉1/2
U

〈
K2Δf

(·)
2 ,K2Δf

(·)
2

〉1/2
U

=− ln

〈
Δf

(·)
1 ,f

(·)
2

〉
U〈

Δf
(·)
1 ,f

(·)
1

〉1/2
U

〈
Δf

(·)
2 ,f

(·)
2

〉1/2
U

.

=− ln
(1 + 〈Uf1f2〉)L

[(1 + 〈Uf1f1〉)L]
1/2

[(1 + 〈Uf2f2〉)L]
1/2

=− ln
(1 + 〈Uf1f2〉)L(√

1 + 〈Uf1f1〉
)L (√

1 + 〈Uf2f2〉
)L

=− ln

(
(1 + 〈Uf1f2〉)√

1 + 〈Uf1f1〉
√
1 + 〈Uf2f2〉

)L

=−
∑
�∈L

ln

(
(1 + 〈Uf1f2〉 (�))√

1 + 〈Uf1f1〉 (�)
√
1 + 〈Uf2f2〉 (�)

)

=−
∑
�∈L

ln
1 + 〈Uf1f2〉(�)√

1+
〈
Uf2

1

〉
(�)
√
1+
〈
Uf2

2

〉
(�)

.

Note that the logarithms in the above sum are well-defined for

all � ∈ L.

Remark: While the CS-D depends on the unit U , the

Bhattacharyya distance dB(π1,π2) = DCS

(√
π1,

√
π2

)
is

invariant to it, because the unit of
√

π1(X)π2(X) cancels out

the unit of δX . Noting that
〈√

πi,
√
πi

〉
=
∫
πi (X) δX = 1,

the Bhattacharyya distance between two LMBs is

dB(π1,π2) = − ln 〈√π1,
√
π2〉

= − ln

〈√
K1Δf

(·)
1 ,

√
K2Δf

(·)
2

〉
= − ln

(√
K1K2

〈√
Δf

(·)
1 ,

√
Δf

(·)
2

〉)
= − ln

(√
K1K2

∫
Δ(X)

√
fX
1 fX

2 δX

)
= − ln

((√
r̃1r̃2

)
L

∫
Δ(X)

(√
f1f2

)X
δX

)
= − ln

((√
r̃1r̃2

)
L

(
1 +
〈√

f1f2

〉)
L

)
= − ln

[√
r̃1r̃2

(
1 +
〈√

f1f2

〉)]
L

= −
∑
�∈L

ln
√
r̃1(�)r̃2(�)

[
1 +
〈√

f1f2

〉
(�)
]
,

where 3rd last line follows from Lemma 2. This is the Rényi-D

with α = 0.5.


